我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

桂花表型变化的环境依赖特征(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2019年02期
Page:
38-46
Column:
研究论文
publishdate:
2019-03-30

Article Info:/Info

Title:
Environment-dependent phenotypic variation of Osmanthus fragrans
Article ID:
1000-2006(2019)02-0038-09
Author(s):
ZHENG Sunyuan1 ZHU Hong1 JIN Siyu2 WANG Mengjuan2 SUN Jie2 GU Chengcheng2 PEI Yinwei2 WANG Xianrong1* DUAN Yifan1*
(1. College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; 2. College of Forestry, Nanjing Forestry University, Nanjing 210037, China)
Keywords:
Osmanthus fragrans phenotypic variation phenotypic diversity geography-climate environmental factor correlation
Classification number :
S685.13
DOI:
10.3969/j.issn.1000-2006.201808039
Document Code:
A
Abstract:
【Objective】Reveal the phenotypic diversity and geographical variation patterns of Osmanthus fragrans.【Method】Cluster analysis variance analysis and correlation analysis were used to study the leaf phenotypic traits of 26 O. fragrans populations, the flower phenotypic traits of 9 O. fragrans populations, and their variability and correlation with geographical-climatic factors. 【Result】The phenotypic traits of O. fragrans were variable and there were differences in the degree of variation of the eight leaf characteristics. According to the results of the analysis of variance, the phenotypic variation was 75.04% among populations and 13.28% within populations. The main source of variation was from among the populations. In terms of the regions, the average coefficient of variation was 19.08%, and the largest coefficient of variation occurred in the Guihua Town population(29.73%)from the Hubei Province, while the Fuziba population from the Guizhou Province was the smallest(13.68%). In terms of floral phenotypes, the number of inflorescences and pedicels showed the greatest degree of discrepancies. O. fragrans has significant or extremely significant correlations with seven environmental impact factors, such as the latitude, longitude, temperature seasonality, and max temperature of the warmest month. There was a significant or extremely significant correlation between all types of traits. The apex angle of the leaves showed a trend of decreasing from west to east, while the petal traits showed an increasing trend from south to north. The cluster analysis results showed that 26 populations could be clearly divided into 3 groups.【Conclusion】There is a high degree of variation and a rich diversity in the phenotypic traits of O. fragrans. Additionally, O. fragrans are closely related to geo-climatic factors. These results can lay the foundation for the protection and innovation of O. fragrans germplasm resources.

References


[1] PIGLIUCCI M. Phenotypic plasticity and evolution by genetic assimilation[J]. Journal of Experimental Biology, 2006, 209(12): 2362-2367. DOI:10.1242/jeb.02070.
[2] LI Y G, LIU X H, MA J W, et al. Phenotypic variation in Phoebe bournei populations preserved in the primary distribution area[J]. Journal of Forestry Research, 2018, 29(1): 35-44. DOI:10.1007/s11676-017-0409-4.
[3] 王姝, 周道玮. 植物表型可塑性研究进展[J]. 生态学报, 2017, 37(24): 8161-8169. DOI:10.5846/stxb201611242412.
WANG S, ZHOU D W. Research on phenotypic plasticity in plants: an overview of history, current status, and development trends[J]. Acta Ecologica Sinica, 2017, 37(24): 8161-8169.
[4] 董昕, 王磊, 鲁仪增, 等. 山东稀有植物小果白刺天然群体表型变异研究[J]. 林业科学研究, 2017, 30(2): 293-299. DOI:10.13275/j.cnki.lykxyj.2017.02.015.
DONG X, WANG L, LU Y Z, et al. Phenotypic variation of nitraria sibirica natural populations in Shandong[J]. Forest Research, 2017, 30(2): 293-299.
[5] 彭丽平, 成仿云, 钟原, 等. 凤丹栽培群体的表型变异研究[J]. 植物科学学报, 2018, 36(2): 170-180. DOI:10.11913/PSJ.2095-0837.2018.20170.
PENG L P, CHENG F Y, ZHONG Y, et al. Phenotypic variation in cultivar populations of Paeonia ostii T. Hong et J. X. Zhang[J]. Plant Science Journal, 2018, 36(2): 170-180.
[6] 柳江群, 尹明宇, 左丝雨, 等. 长柄扁桃天然种群表型变异[J]. 植物生态学报, 2017, 41(10): 1091-1102. DOI:10.17521/cjpe.2017.0104.
LIU J Q, YIN M Y, ZUO S Y, et al. Phenotypic variations in natural populations of Amygdalus pedunculata[J]. Acta Phytoecologica Sinica, 2017, 41(10): 1091-1102.
[7] 尹明宇, 朱绪春, 刘慧敏, 等. 西伯利亚杏种质资源花表型变异[J]. 西北农林科技大学学报(自然科学版), 2018, 46(2): 92-103. DOI:10.13207/j.cnki.jnwafu.2018.02.012.
YIN M Y, ZHU X C, LIU H M, et al. Flower phenotypic variations of germplasm resources of Siberian apricot(Armeniaca sibirica)[J]. Journal of Northwest A & F University(Natural Science Edition), 2018, 46(2): 92-103.
[8] MOZDZER T J, ZIEMAN J C. Ecophysiological differences between genetic lineages facilitate the invasion of non-native Phragmites australis in North American Atlantic coast wetlands[J]. Journal of Ecology, 2010, 98(2): 451-458. DOI:10.1111/j.1365-2745.2009.01625.x.
[9] 徐沂春,赵宏波,胡绍庆. 分布南界和北界的桂花野生种群遗传多样性比较[C]//张启翔. 2014 中国观赏园艺研究进展.北京:中国林业出版社,2014:29-35.
XU Y C, ZHAO H B, HU S Q. Comparison of genetic diversity of two populations from the northern and southern boundary of natural distribution in Osmanthus fragrans[C]//ZHANG Q X. Progress of Ornamental Horticulture in China(2014). Beijing:China Forestry Publishing House, 2014:29-35.
[10] WANG J Y, YUAN J H, MEI F D, et al. Assessment of genetic diversity and relationships among Osmanthus fragrans cultivars using AFLP markers[J]. Electronic Journal of Biotechnology, 2011, 14(1): 2-3. DOI:10.2225/vol14-issue1-fulltexT-9.
[11] 韩远记, 董美芳, 袁王俊, 等. 部分桂花栽培品种的AFLP分析[J]. 园艺学报, 2008, 35(1): 137-142. DOI:10.3321/j.issn:0513-353X.2008.01.024.
HAN Y J, DONG M F, YUAN W J, et al. Studies on the genetic diversity of some Osmanthus fragrans cultivars based on AFLP markers[J]. Acta Horticulturae Sinica, 2008, 35(1): 137-142.
[12] 韩远记, 董美芳, 袁王俊, 等. 桂花品种资源的遗传多样性分析[J]. 植物学通报, 2008, 25(5): 559-564. DOI:10.3969/j.issn.1674-3466.2008.05.007.
HAN Y J, DONG M F, YUAN W J, et al. Study on the genetic diversity of Osmanthus fragrans cultivars[J]. Chinese Bulletin of Botany, 2008, 25(5): 559-564.
[13] DUAN Y F, LI M, YI X G, et al. Assessment of genetic diversity among androdioecious ancient Osmanthus fragrans trees by SSR markers[J]. Biochemical Systematics and Ecology, 2015, 61: 179-185. DOI:10.1016/j.bse.2015.06.009.
[14] 赵宏波, 郝日明, 胡绍庆. 中国野生桂花的地理分布和种群特征[J]. 园艺学报, 2015, 42(9): 1760-1770. DOI:10.16420/j.issn.0513-353x.2014-0939.
ZHAO H B, HAO R M, HU S Q. Geographic distribution and population characteristics of Osmanthus fragrans[J]. Acta Horticulturae Sinica, 2015, 42(9): 1760-1770.
[15] 胡坚强, 夏有根, 梅艳, 等. 古树名木研究概述[J]. 福建林业科技, 2004, 31(3): 151-154. DOI:10.3969/j.issn.1002-7351.2004.03.042.
HU J Q, XIA Y G, MEI Y, et al. Research of the acient and famouse trees in China[J]. Journal of Fujian Forestry Science and Technology, 2004, 31(3): 151-154.
[16] 葛颂, 王明庥, 陈岳武. 用同工酶研究马尾松群体的遗传结构[J]. 林业科学,1988, 24(4): 399-409.
GE S, WANG M X, CHEN Y W. Study on the genetic structure of masson pine population by isoenzyme[J]. Scientia Silvae Sinicae,1988,24(4): 399-409.
[17] JOSHI J, SCHMID B, CALDEIRA M C, et al. Local adaptation enhances performance of common plant species[J]. Ecology Letters, 2001, 4(6): 536-544. DOI:10.1046/j.1461-0248.2001.00262.x.
[18] BANTA J A, DOLE J, CRUZAN M B, et al. Evidence of local adaptation to coarse-grained environmental variation in Arabidopsis thaliana[J]. Evolution, 2007, 61(10): 2419-2432. DOI:10.1111/j.1558-5646.2007.00189.x.
[19] TSOBENG A, TCHOUNDJEU Z, DEGRANDE A, et al. Phenotypic variation in Pentaclethra macrophylla Benth(Fabaceae)from the humid lowlands of Cameroon[J]. Afrika Focus, 2015, 28(2): 47-61. DOI:10.21825/af.v28i2.4864.
[20] FLÜCKIGER W, OERTLI J J, FLÜCKIGER-KELLER H. The effect of wind gusts on leaf growth and foliar water relations of aspen[J]. Oecologia, 1978, 34(1): 101-106. DOI:10.1007/bf00346244.
[21] 彭珠清. 闽台杉木种质资源亲缘关系的比较研究[D]. 福州: 福建农林大学, 2013.
PENG Z Q. Comparative study of Chinese fir germplasm resources genetic relationship between Fujian and Taiwan[D]. Fuzhou: Fujian Agriculture and Forestry University, 2013.
[22] 张凯, 侯继华, 何念鹏. 油松叶功能性状分布特征及其控制因素[J]. 生态学报, 2017, 37(3): 736-749.DOI:10.5846/stxb201508291793.
ZHANG K, HOU J H, HE N P. Leaf functional trait distribution and controlling factors of Pinus tabuliformis[J]. Acta Ecologica Sinica, 2017, 37(3): 736-749.
[23] 尹明宇. 内蒙古西伯利亚杏遗传变异及优良种源、家系、单株选择[D]. 北京: 中国林业科学研究院, 2017.
YI M Y. High-level genetic variation and superior provenances, families, and individuals selection of Armeniaca sibirica in Inner Mongolia[D]. Beijing: Chinese Academy of Forestry, 2017.
[24] 文珊娜. 灰木莲种质资源遗传多样性研究[D]. 北京: 中国林业科学研究院, 2017.
WEN S N. Genetic diversity of germplasm resourse of Manglietia conifera Dandy[D]. Beijing: Chinese Academy of Forestry, 2017.
[25] 惠利省. 马褂木遗传多样性及系统地理学研究[D]. 南京: 南京林业大学, 2010.
HUI L S. Genetic diversity and phylogeography of Liriodendron chinense[D]. Nanjing: Nanjing Forestry University, 2010.
[26] 姚淑均. 滇楸优树及其子代苗期性状遗传变异研究[D]. 北京: 中国林业科学研究院, 2013.
YAO S J. Study of seedling traits varying genetically of excellent tree and its progenies in Catalpa fgargesii bur. f. duclouxii(Dode)Gilmour[D]. Beijing: Chinese Academy of Forestry, 2013.
[27] 邵文豪, 汤庚国, 姜景民. 基于蜡叶标本分析的湖北海棠种内变异与地理分化研究[J]. 植物研究, 2009, 29(3): 270-275.
SHAO W H, TANG G G, JIANG J M. Intraspecific variation and geographical differentiation of Malus hupehensis based on exsiccate-specimen analysis[J]. Bulletin of Botanical Research, 2009, 29(3): 270-275.

Last Update: 2019-03-30