我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

Cd胁迫对湿地沉积物反硝化与氨化相对重要性的影响(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2019年02期
Page:
64-72
Column:
研究论文
publishdate:
2019-03-30

Article Info:/Info

Title:
The relative importance of denitrification and dissimilatory nitrate reduction to ammonium in sediments under Cd stress in Chongming Dongtan wetlands
Article ID:
1000-2006(2019)02-0064-09
Author(s):
CHEN Yuan12 XU Chuanhong1 HAN Jiangang23*
(1. College of Biological and the Environment, Nanjing Forestry University, Nanjing 210037, China;2. Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; 3. National Positioning Observation Station of Hungtse Lake Wetland Ecosystem in Jiangsu Province, Nanjing 210037, China)
Keywords:
Cd stress denitrification dissimilatory nitrate reduction to ammonium coastal wetland Spartina alterniflora community
Classification number :
X53; S718; S19
DOI:
10.3969/j.issn.1000-2006.201801043
Document Code:
A
Abstract:
【Objective】Variations in and unreliability of nitrogen transformation under heavy metal stress in coastal wetland ecosystems, caused by global warming and increasing anthropogenic activities, have drawn much attention. In this study, we aimed to examine the relative importance of denitrification(Den)and dissimilatory nitrate reduction to ammonium(DNRA)in sediments with various Cd contents.【Method】Sediment samples were obtained from under Phragmites australis, Spartina alterniflora community and mudflats without vegetation in the Chongming Dongtan wetlands. Den and DNRA rates in the sediments were measured using the 15N isotope tracing technique after incubation with various concentrations of Cd. The effectiveness of Cd was evaluated using the modified BCR 3 step sequential extraction method.【Result】Low doses of Cd(0.05-0.30 mg/kg)increased DNRA/Den values by 6.9%-53.4%, indicating nitrate reductions in sediments being induced mainly with DNRA pathway. In contrast, the ratios under Spartina alterniflora community were 3.1 to 5.4 times higher than those under Phragmites australis community. This suggests that Spartina alterniflora community may be beneficial for nitrate reductions via the DNRA pathway. In addition, Den and DNRA rates under Phragmites australis community were mainly dominated by exchangeable and reducible Cd in the sediments, whereas the content of oxidized Cd substantially affected the relative importance of Den and DNRA under Spartina alterniflora community. 【Conclusion】Low doses of Cd input in coastal wetlands probably stimulate nitrate reduction in sediments by enhancing the DNRA pathway. Cd fractions affecting Den and DNRA rates significantly depend on the vegetation type.

References


[1] FERNANDES S O, BONIN P C, MICHOTEY V D, et al. Nitrogen-limited mangrove ecosystems conserve N through dissimilatory nitrate reduction to ammonium[J]. Scientific Reports, 2012, 2: 419. DOI: 10.1038/srep00419.
[2] ZHANG W J, ZHANG Y, SU W T, et al. Effects of cathode potentials and nitrate concentrations on dissimilatory nitrate reductions by Pseudomonas alcaliphila in bioelectrochemical systems [J]. Journal of Environmental Sciences, 2014, 26(4):885-891. DOI: 10.1016/S1001-0742(13)60460-X.
[3] SAVVIDES C, PAPADOPOULOS A, HARALAMBOUS K J, et al. Sea sediments contaminated with heavy metals: metal speciation and removal [J]. Water Scientific Technology, 1995, 32(10):65-73. DOI: 10.1016/0273-1223(96)00077-7.
[4] MAGALHãES C, COSTA J, TEIXEIRA C, et al. Impact of trace metals on denitrification in estuarine sediments of the Douro River estuary, Portugal [J]. Marine Chemistry, 2007, 107:332-341. DOI:10.1016/j.marchem.2007.02.005.
[5] 徐继荣,王友绍,孙松.海岸带地区的固氮、氨化、硝化与反硝化特征[J].生态学报,2004,24(12):2907-2914. DOI: 10.3321/j.issn:1000-0933.2004.12.036.
XU J R, WANG Y S, SUN S. The characteristics of nitrogen fixation, ammonification, nitrification and denitrification in coastal zones [J]. Acta EcologicaSinica, 2004, 24(12): 2907-2914.
[6] HAN H Y, LI Z K. Effects of macrophyte-associated nitrogen cycling bacteria on anammox and denitrification in river sediments in the Taihu Lake region of China[J]. Ecological Engineering, 2016, 93:82-90. DOI:10.1016/j.ecoleng.2016.05.015.
[7] SAEED T, SUN G Z. Enhanced denitrification and organics removal in hybrid wetland columns: comparative experiments[J].Bioresource Technology, 2011, 102: 967-974.DOI:10.1016/j.biortech.2010.09.056.
[8] 杨杉,吴胜军,蔡延江,等.硝态氮异化还原机制及其主导因素研究进展[J].生态学报,2016,36(5):1223-1232. DOI: 10.5846/stxb201407181464.
YANG S, WU S J, CAI Y J, et al. The synergetic and competitive mechanism and the dominant factors of dissimilatory nitrate reduction processes: a review [J]. Acta Ecologica Sinica, 2016, 36(5):1223-1232.
[9] KIM S Y, VERAART A J, FRANKE M M, et al. Combined effects of carbon, nitrogen and phosphorus on CH4 production and denitrification in wetland sediments [J]. Geoderma, 2015, 259-260: 354-61.DOI:10.1016/j.geoderma.2015.03.015.
[10] KOROLA A R, AHNA C, NOE G B. Richness, biomass, and nutrient content of a wetland macrophyte community affect soil nitrogen cycling in a diversity-ecosystem functioning experiment [J]. Ecological Engineering, 2016, 95: 252-265. DOI:10.1016/j.ecoleng.2016.06.057.
[11] 徐莎,陈圆,印杰,等.典型滨海湿地沉积物反硝化与硝态氮氨化相对重要性研究[J].南京林业大学学报(自然科学版),2016,40(2):9-15. DOI: 10.3969/j.issn.1000-2006.2016.02.002.
XU S, CHEN Y, YIN J, et al. The relative importance of dissimilatory nitrate reduction to ammonium and denitrification in sediments in a typical coastal wetland [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2016, 40(2): 9-15.
[12] 韩建刚,曹雪.典型滨海湿地干湿交替过程氮素动态的模拟研究[J].环境科学,2013(6): 2383-2389. DOI:10.13227/j.hjkx.2013.06.054.
HAN J G, CAO X. Effects of drying-rewetting alternation on nitrogen dynamics in a typical coastal wetland: a simulation study [J]. Environmental Science, 2013(6): 2383-2389.
[13] SGOURIDIS F, HEPPELL C M, WHARTON G, et al. Denitrification and dissimilatory nitrate reduction to ammonium(DNRA)in a temperate re-connected floodplain [J]. Water Research, 2011, 45(16):4909-4922. DOI:10.1016/j.watres.2011.06.037.
[14] SAKADEVAN K K, ZHENG H, BAVOR H J. Impact of heavy metals on denitrification in surface wetland sediments receiving wastewater[J]. Water Science and Technology, 1999, 40(3): 349-355. DOI: 10.1016/S0273-1223(99)00471-0.
[15] 赵迪.重金属胁迫对潮滩沉积物反硝化作用影响机制的初步研究[D].上海:华东师范大学,2013.
ZHAO D. A preliminary research on the effect of heavy metals on denitrification in tidal flat sediments[D]. Shanghai: East China Normal University, 2013.
[16] 马俊,傅成诚.不同剂量外源重金属注入对土壤重金属形态分布的影响[J].科学技术与工程,2016,35(16):129-135.DOI: 10.3969/j.issn.1671-1815.2016.35.020.
MA J, FU C C. Effect of different doses of exogenous heavy metals on the fractionation of heavy metals in soil [J]. Science Technology and Engineering, 2016, 35(16):129-135.
[17] 傅成诚,周亮,梅凡民. 塿土中外源重金属Pb、Zn、Cd 形态分布随时间变化的规律[J].土壤与作物,2012,1(4): 199-204.
FU C C, ZHOU L, MEI F M. Changes of form for exogenous heavy metals Pb, Zn and Cd in Lou soil [J]. Soil and Crop, 2012, 1(4): 199-204.
[18] 周健,李虎,李晓林,等.外源Cd胁迫下施污土壤中重金属的形态特征和土壤酶活性的关系[J].环境化学,2016,35(10): 2036-2043. DOI: 10.7524/j.issn.0254-6108.2016.10. 2016031404.
ZHOU J, LI H, LI X L, et al. The relationship between forms of Cd and soil enzymatic activities in sludge-amended soil [J]. Environmental Chemistry, 2016, 35(10):2036-2043.
[19] 刘霞,刘树庆,王胜爱.河北主要土壤中重金属镉、铅形态与土壤酶活性的关系[J].河北农业大学学报,2002,25(1):33-37. DOI:10.3969/j.issn.1000-1573.2002.01.009.
LIU X, LIU S Q, WANG S A. The relationship between heavy metal forms and soil enzymatic activities in the main soils of Hebei Province [J]. Journal of Agricultural University of Hebei, 2002, 25(1): 33-37.
[20] 袁兴中,陆健健,刘红.河口盐沼植物对大型底栖动物群落的影响[J].生态学报,2002,22(3): 326-333. DOI:10.3321/j.issn:1000-0933.2002.03.006.
YUAN X Z, LU J J, LIU H. Influence of characteristics of scirpusmariqueter community on the benthic macro-invertebrate in a salt marsh of the Changjiang estuary [J]. Acta Ecologica Sinica, 2002, 22(3): 326-333.
[21] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科学出版社,2000.
[22] 蔡贵信,李新慧,曹亚澄,等.一种直接测定硝化-反硝化气体的15N示踪-质谱法[J].植物营养与肥料学报,1995,1(3/4): 53-58. DOI:10.3321/j.issn:1008-505X.1995.04.008.
CAI G X, LI X H, CAO Y C, et al. A method for direct measurement of 15N-gases from nitrification-denitrification with mass spectrometer [J]. Plant Nutrition and Fertilizer Sciences, 1995, 1(3/4): 53-58.
[23] MUüLLER C, LAUGHLIN R J, STEVENS R J. A 15N tracing model to analyze transformations in old grassland soil [J]. Soil Biology and Biochemistry, 2004, 36(4):619-632. DOI: 10.1016/j.soilbio.2003.12.006.
[24] 孙建飞,白娥,戴崴巍,等.15N标记土壤连续培养过程中扩散法测定无机氮同位素方法改进[J]. 生态学杂志,2014,33(9): 2574-2580. DOI: 10.13292/j.1000-4890.2014.0176.
SUN J F, BAI E, DAI W W, et al. Improvements of the diffusion method to measure inorganic nitrogen isotope of 15N labeled soil [J]. Chinese Journal of Ecology, 2014, 33(9):2574-2580.
[25] RAURET G, LOPEZ-SANCHEZ J F, SAHUQUILLO A, et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials[J].Journal of Environmental Monitoring, 1999, 1:57-61. DOI: 10.1039/a807854h.
[26] SAHUQUILLOA A, LPEZ-SÁNCHEZA J F, RUBIOAR, et al. Use of a certified reference material for extractable trace metals to assess sources of uncertainty in the BCR three-stage sequential extraction procedure [J]. Analytica Chimica Acta, 1999, 382(3): 317-327. DOI: 10.1016/S0003-2670(98)00754-5.
[27] 黄正,SAKADEVANK,BAVOR J.Cd2+、Cu2+和Zn2+对人工湿地反硝化作用的影响[J].环境科学,2000(4):110-112.DOI: 10.13227/j. hjkx. 2000. 04. 026.
HUANG Z, SAKADEVAN K, BAVOR J.Cd2+, Cu2+and Zn2+ influence on denitrification in constructed wetland [J]. Environmental Science, 2000(4):110-112.
[28] 胡荣桂,李玉林,彭佩钦,等.重金属镉、铅对土壤生化活性影响的初步研究[J].农业环境保护,1990(4):6-9.
HU R G, LI Y L, PENG P Q, et al. Preliminary study on the effects of heavy metal cadmium and lead on soil biochemical activity [J]. Agricultural Environmental Protection, 1990(4):6-9.
[29] LAVERMAN A M, CANAVAN R W, SLOMP C P, et al. Potential nitrate removal in a coastal freshwater sediment(Haringvliet Lake,the Netherlands)and response to salinization [J]. Water Resource, 2007, 41(14):3061-3068.DOI: 10.1016/j.watres.2007,04:002.
[30] RüTTING T, BOECKX P, MÜLLER C, et al. Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle [J]. Biogeosciences, 2011, 8(7): 1779-1791. DOI: 10.5194/bg-8-1779-2011.
[31] 郑平,胡宝兰,徐向阳,等.厌氧氨氧化电子受体的研究[J].应用与环境生物学报,1998,4(1):74-76. DOI:10.3321/j.issn:1006-687X.1998.01.017.
ZHENG P, HU B L, XU X Y, et al. Study on electron acceptor of mixed microbial culture for anaerobic ammonia oxidation [J]. Chinese Journal Applied and Environmental Biology,1998,4(1): 74-76.
[32] ZOMEREN C V, WHITE J R, DE LAUNE R D. Ammonification and denitrification rates in coastal Louisiana bayou sediment and marsh soil: implications for Mississippi River diversion management [J].Ecological Engineering, 2013, 54: 77-81. DOI:10.1016/j.ecoleng. 2013.01. 029.
[33] 莫争,王春霞,陈琴,等.重金属Cu、Pb、Zn、Cr、Cd在土壤中的形态分布和转化[J].农业环境保护,2002,21(1): 9-12.
MO Z, WANG C X, CHEN Q, et al. Form distribution and transformation of heavy metals of Cu,Pb,Zn,Cr and Cd in soils[J]. Agro-environmental Protection, 2002, 21(1): 9-12.
[34] 陈小娇,李取生,杜烨锋,等.外源重金属在珠江河口湿地土壤中的形态转化[J].生态与农村环境学报,2010,26(3): 251-256. DOI:10.3969/j.issn.1673-4831.2010.03.012.
CHEN X J, LIQ S, DUY F, et al. Transformation of forms of exogenous heavy metals in wetland soil at the Pearl River estuary [J].Journal of Ecology and Rural Environment, 2010, 26(3): 251-256.
[35] 黄璜,南忠仁,刘晓文,等.干旱地区绿洲土壤中Cd、Pb、Zn形态分布与芹菜有效性[J].兰州大学学报(自然科学版),2010,46(1):53-58. DOI: 10.13885/j. issn. 0455-2059. 2010. 01. 015.
HUANG H, NAN Z R, LIU X W, et al. Form distribution of Cd, Pb and Zn and their availability to celery in arid oasis soil [J]. Journal of Lanzhou University(Natural Sciences), 2010, 46(1): 53-58.
[36] PERUZZIA E, MASCIANDAROA G, MACCIA C, et al. Heavy metal fractionation and organic matter stabilization in sewage sludge treatment wetlands [J]. Ecological Engineering, 2011, 37: 771-778.DOI:10.1016/j.ecoleng.2010.05.009.
[37] XIAO R, BAI J H, LU Q Q, et al. Fractionation, transfer, and ecological risks of heavy metals in riparian and ditch wetlands across a 100-year chronosequence of reclamation in an estuary of China [J]. Science of the Total Environment, 2015, 517: 66-75. DOI: 10.1016/j.scitotenv.2015.02.052.
[38] LIU J Y, SUN S Y. Total concentrations and different fractions of heavy metals in sewage sludge from Guangzhou, China [J]. Transactions of Nonferrous Metals Society of China, 2013, 23: 2397-2407. DOI: 10.1016/S1003-6326(13)62747-8.

Last Update: 2019-03-30