我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

不同家系交趾黄檀种子萌发及幼苗生长差异(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2019年02期
Page:
153-160
Column:
专题报道
publishdate:
2019-03-30

Article Info:/Info

Title:
Variation of seed germination and seedling growth among different families of Dalbergia cochinchinensis
Article ID:
1000-2006(2019)02-0153-08
Author(s):
MAI Baoying12 HONG Zhou1* XU Daping1 LUO Mingdao12 ZHANG Ningnan1 HUANG Xizhao2
(1. Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China; 2. Research Institute of Forestry of Gaoming Zone, Foshan 528515, China)
Keywords:
Dalbergia cochinchinensis Pierre families seed seedling growth phenotypic traits comprehensive selection
Classification number :
S722.7
DOI:
10.3969/j.issn.1000-2006.201807048
Document Code:
A
Abstract:
【Objective】 Dalbergia cochinchinensis Pierre is a valuable, semi-deciduous rosewood of the family Papilionoideae, commonly known as Dahongsuanzhi. D. cochinchinensis has various beneficial characteristics, including its smooth texture, ability to be polished to a high gloss, great strength, corrosion resistance and good processing performance. To research the characteristics of its seed, performance of the seedling growth, and early seedling quality to a comprehensive degree, we used D. cochinchinensis seeds collected from 10 provenances in Thailand, Cambodia and China. Additionally, we analyzed the geographical variation of phenotypic traits and the quality classification/evaluation of the seedlings. From this, we preliminarily selected the superior provenance. Finally, we provided theoretical support for work regarding D. cochinchinensis and its suitable introduction, genetic improvement for introduction to the appropriate regions, and further genetic improvement and conservation of the germplasm resources in China.【Method】 We analyzed the seed morphology(seed length, seed width, seed thickness and thousand-grain weight), germination characters(germination ratio, germination energy and germination index), and seedling growth traits(seedling height, seedling ground diameter and biomass)for 32 strains of D. cochinchinensis from Thailand. The ANOVA and Duncan's multiple comparisons analysis of the seed morphology, seed germination characteristics, and seedling growth of each strain were carried out in the statistical software R version 3.4.2. Pearson's correlation coefficient was calculated among the various traits. The membership function method was used to evaluate the different strains.【Result】 There were significant differences in the phenotypic traits of the seeds among the strains. The variation in the seed length, width and thickness reached a very significant level in the 32 strains. The average seed morphology of the 32 strains was( 6.63 ± 0.56)cm in length,(4.41 ± 0.41)cm in width,(1.19 ± 0.14)cm in thickness,(25.15 ± 3.2)g in thousand-grain weight, with phenotypic variation coefficients of 8.45%, 9.29%, 11.76% and 12.88%, respectively. There were also significant differences in the germination ratio, germination energy, germination index and seedling growth traits. The average seedling height, stem height and leaf area of the 32 strains were 33.88 cm, 3.62 mm and 4.37 cm2, respectively. At the seedling stage, the biomass of the leaves was the largest. The average total biomass, leaf biomass, root biomass and stem biomass were 2.55 g, 1.05 g and 0.66 g, respectively. The variance analysis showed that there were significant differences in the biomass of different organs among the seedlings of different strains. The correlation between the thousand-grain weight and growth traits(seedling height and seedling ground diameter)were significant(P > 0.05). According to the correlation analysis of different types of traits, the thousand-grain weight, germination rate, ground diameter, and total biomass were selected as the evaluation indexes. The strains were comprehensively analyzed. Strains No. 20, No. 23 and No. 18 were better performers in the correlation and membership function analysis.【Conclusion】 There were significant differences in the phenotypic traits among the germplasm. Strain No. 20, which had the best seedling growth, could be used as a preferred strain. In the early growth stage, the seed germination rate and phenotypic characteristics will have some influence in the breeding selection, but the germination test and seedling characteristic evaluation are only the initial stages of seedling introduction and cultivation. The difference in seed quality is also related to the nutritional status and harvesting time of seed-bearing mother trees. The determination of the optimal strain is a comprehensive selection and evaluation problem. Solving this problem must be through subsequent seedling breeding, afforestation and progeny breeding. Further work needs to be focused on continuous tracking verification. The preferred strain selected in this study can provide some guidance for the further popularization, cultivation, improvement and domestication of this precious mahogany resource in China. This study provides a theoretical basis for the resource conservation and genetic improvement of D. cochinchinensis.

References


[1] JØKER D. Dalbergia cochinchinensis Pierre [R]. Bangkok: Seed Leaflet-Danida Forest Seed Centre, 2000.
[2] MORITSUKA E, CHHANG P, TAGANE S, et al. Genetic variation and population structure of a threatened timber tree Dalbergia cochinchinensis in Cambodia[J]. Tree Genetics & Genomes, 2017, 13(6): 115. DOI: 10.1007/s11295-017-1199-8.
[3] 吴培衍, 张荣标, 张金文. 红木树种新贵:交趾黄檀[J]. 福建热作科技, 2016,41(4):51-54. DOI:10.3969/j.issn.1006-2327.2016.04.016.
WU P Y, ZHANG R B, ZHANG J W. Rosewood: Dalbergia cochinchinensis[J]. Fujian Science & Technology of Tropical Crops, 2016,41(4):51-54.
[4] 国家质量技术监督局. GB/T 18107—2017 红木[S]. 北京: 国家标准出版社, 2017.
State Bureau of Quality and Technical Supervision. GB/T 18107-2017 Rosewood[S]. Beijing: National Standard Press, 2017.
[5] CITES. Co P16 Prop 60. Consideration of proposals for amendment of appendices I and II[C]. Bangkok(Thailand): Convention on International Trade in Endangered Species(CITES), 2013:1-16.
[6] FA, CTSP. Forest gene conservation strategy[M]. Phnom Penh: Forestry Administration(FA)and Cambodia Tree Seed Project(CTSP), 2003(Annex 2):B2-1- B2-9.
[7] HUAF C P. Research on germination techniques for seedlings of Dalbergia cochinchinensis Pierre in KaBang District, Gia Lai Province, Vietnam[J]. Journal of Agriculture & Rural Development, 2014(1):1-12.
[8] 魏鑫, 秦志永, 陈复明, 等. 4种东南亚黄檀属红木的表面润湿性能[J]. 西北林学院学报, 2017, 32(6):240-244. DOI:10.3969/j.issn.1001-7461.2017.06.38.
WEI X, QIN Z Y, CHEN F M, et al. Surface wettability of four kinds of Dalbergia rosewoods in southeast Asia[J]. Journal of Northwest Forestry University, 2017, 32(6):240-244.
[9] 吴青思, 王旋, 夏金尉, 等. 交趾黄檀和微凹黄檀木材构造特征及GC-MS的辨析[J]. 林业工程学报, 2017,2(6):26-30. DOI:10.13360/j.issn.2096-1359.2017.06.005.
WU Q S, WANG X, XIA J W, et al. Identification and GC-MS analysis of Dalbergia cochinchinensis Pierre and Dalbergia retusa Hesml[J]. China Forestry Science and Technology, 2017, 2(6):26-30.
[10] PATHAK V, SHIROTA O, SEKITA S, et al. Antiandrogenic phenolic constituents from Dalbergia cochinchinensis[J]. Phytochemistry, 1997, 46(7):1219-1223. DOI:10.1016/s0031-9422(97)80015-5.
[11] PORNPUTTAPITAK W. Chemical constituents of the branches of Anomianthus dulcis and the branches of Dalbergia cochinchinensis Pierre[D]. Bangkok: Silpakorn University, 2008.
[12] 刘顺治. 黄檀属和紫檀属6种红木化学特性的研究[D]. 福州: 福建农林大学, 2014.
LIU S Z. Study on chemical properties of six rosewoods in Dalbergia genus and Pterrocarpus genus[D]. Fuzhou: Fujian Agriculture and Forestry University, 2014.
[13] 曾秀珍. 交趾黄檀实生苗培育技术[J]. 福建热作科技, 2017, 42(2): 39-41. DOI: 10.3969/j.issn.1006-2327.2017.02.010.
ZENG X Z. Seedling cultivation technique for Dalbergia cochinchinensis[J]. Fujian Science & Technology of Tropical Crops, 2017, 42(2): 39-41.
[14] 莫世琴, 林明平, 王淑娥. 不同产地交趾黄檀种子形态与发芽率研究[J]. 热带林业, 2016, 44(2): 8-10. DOI:10.3969/j.issn.1672-0938.2016.02.002.
MO S Q, LIN M P, WANG S E. Variations of seed morphology and germination percentages of different producing area of Dalbergia cochinchinensis Pierre[J]. Tropical Forestry, 2016, 44(2): 8-10.
[15] 李瑞聪. 交趾黄檀不同家系种子形态特性和发芽率差异[J]. 福建热作科技, 2016, 41(2): 29-33. DOI: 10.3969/j.issn.1006-2327.2016.02.009.
LI R C. Variations of seed morphology and germination percentages of different families of Dalbergia cochinchinensis Pierre[J]. Fujian Science & Technology of Tropical Crops, 2016, 41(2): 29-33.
[16] 李科, 洪舟, 杨曾奖, 等. 不同种源交趾黄檀种子形态及多点发芽率的差异[J]. 浙江农林大学学报, 2018, 35(1): 121-127. DOI: 10.11833/j.issn.2095-0756.2018.01.016.
LI K, HONG Z, YANG Z J, et al. Morphological variations in seeds from various provenances of Dalbergia cochinchinensis with a multi-site germination test[J]. Journal of Zhejiang A&F University, 2018, 35(1): 121-127.
[17] HIEN V T T, THI P D. Genetic diversity among endangered rare Dalbergia cochinchinensis(Fabaceae)genotypes in Vietnam revealed by random amplified polymorphic DNA(RAPD)and inter simple sequence repeats(ISSR)markers [J]. African Journal of Biotechnology, 2012, 11: 8632-8644. DOI:10.5897/ajb11.3598.
[18] HARTVIG I, SO T, CHANGTRAGOON S, et al. Population genetic structure of the endemic rosewoods Dalbergia cochinchinensis and D. oliveri at a regional scale reflects the Indochinese landscape and life-history traits[J]. Ecology and Evolution, 2018, 8(1):530-545. DOI: 10.1002/ece3.3626.
[19] 仲崇禄, 施纯淦, 王维辉, 等. 华南地区山地木麻黄种源试验与筛选[J]. 林业科学, 2002, 38(6): 58-65. DOI:10.3321/j.issn:1001-7488.2002.06.011.
ZHONG C L, SHI C J, WANG W H, et al. International provenance trials of Casuarina Junghuhniana in southern China[J]. Scientia Silvae Sinicae, 2002, 38(6): 58-65.
[20] 杨书文, 刘桂丰, 彭宏梅, 等. 樟子松种源试验研究[J]. 东北林业大学学报, 1991(S2): 108-114. DOI:10.13759/j.cnki.dlxb.1991.s2.017.
LIU S W, LIU G F, PENG H M, et al. Study on the provenance test of Pinus sylvestris var. mongolica Litv. [J]. Journal of Northeast Forestry University, 1991(S2): 108-114.
[21] 欧建德. 观赏型南方红豆杉地理种源试验及优良地理种源的选择初步研究[J]. 西北林学院学报, 2012, 27(4): 134-140. DOI:10.3969/j.issn.1001-7461.2012.04.25.
OU J D. Selection of excellent geographical provenances and test of geography provenances of landscape Taxus chinensis var. mairei[J]. Journal of Northwest Forestry University, 2012, 27(4): 134-140.
[22] 国家质量技术监督局. GB 2772—1999林木种子检验规程[S]. 北京:中国标准出版社, 1999: 116.
National Quality and Technology Supervision Bureau. GB 2772-1999 Tree seed testing procedures[S]. Beijing: China Standard Press, 1999:116.
[23] 郭娜, 刘剑秋. 植物生物量研究概述(综述)[J]. 亚热带植物科学, 2011, 40(2): 83-88. DOI: 10.3969/j.issn.1009-7791.2011.02.024.
GUO N, LIU J Q. A review of research on plant biomass[J]. Subtropical Plant Science, 2011, 40(2): 83-88.
[24] 林元震, 陈晓阳. R与ASReml-R统计分析教程[M]. 北京: 中国林业出版社, 2014: 99-136.
LIN Y Z, CHEN X Y. R & ASReml-R statistical analysis tutorial[M]. Beijing: China Forestry Publishing, 2014: 99-136.
[25] 彭松, 马淼, 郑勇奇, 等. 不同种源花楸树幼苗越夏能力的比较[J]. 生态学杂志, 2014, 33(2): 321-327. DOI:10.13292/j.1000-4890.2014.0009.
PENG S, MA M, ZHENG Y Q, et al. Comparison in thermotolerance over summer of seedlings among different provenances of Sorbus pohuashanensis(Hance)Hedl[J]. Chinese Journal of Ecology, 33(2): 321-327.
[26] WCRKCR E. Seed anatomy [M]. Berlin: Stuttgart Borntaracger, 1997:1-6.
[27] PECO B, TRABA J, LEVASSOR C, et al. Seed size, shape and persistence in dry Mediterranean grass and scrubland[J]. Seed Science Research, 2003, 13(1): 87-95. DOI:10.1079/ssr2002127.
[28] 麻永红. 东京黄檀种子生物学及幼苗生长变异研究[D]. 北京: 中国林业科学研究院, 2016.
MA Y H. Variation in seed biological traits and early seedling growth of Dalbergia tonkinensis Prain[D]. Beijing: Chinese Academy of Forestry, 2016.
[29] 张艳福, 姚卫杰, 郭其强, 等. 干旱胁迫对砂生槐种子萌发和幼苗生长的影响[J]. 西北农林科技大学学报(自然科学版), 2015, 43(10): 45-56. DOI:10.13207/j.cnki.jnwafu.2015.10.007.
ZHANG Y F, YAO W J, GUO Q Q, et al. Effect of drought stress on seed germination and seedling growth of Sophora moorcroftiana[J]. Journal of Northwest A & F University(Natural Science Edition), 2015, 43(10): 45-56.
[30] 王琦, 朱之悌. 毛白杨优树无性系相关选择研究[J]. 林业科学研究, 1995(1): 107-111.
WANG Q, ZHU Z T. Study on correlate selection from Populus tomentosa[J]. Forest Research, 1995(1): 107-111.
[31] 郝自远, 李火根, 康昊, 等. 北美鹅掌楸人工林生长规律及早期选择可行性探究[J]. 林业科学研究, 2017, 30(5): 878-885. DOI:10.13275/j.cnki.lykxyj.2017.05.023.
HAO Z Y, LI H G, KANG H, et al. Growth pattern and early selection of Liriodendron tulipifera[J]. Forest Research, 2017, 30(5): 878-885.

Last Update: 2019-03-30