我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

沿海造林树种根际丛枝菌根真菌与土壤因子的通径分析(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2019年04期
Page:
139-147
Column:
研究论文
publishdate:
2019-07-24

Article Info:/Info

Title:
Path analysis of arbuscular mycorrhizal fungi and soil factors in coastal afforestation tree species
Article ID:
1000-2006(2019)04-0139-09
Author(s):
MA JieyiWANG JinpingZHANG Jinchi*ZHU LingjunYUAN Zhongming
(Co-Innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China)
Keywords:
arbuscular mycorrhizal afforestation tree species soil factor colonization glomalin path analysis coastal area
Classification number :
S718.5
DOI:
10. 3969/ j. issn. 1000-2006. 201901012
Document Code:
A
Abstract:
【Objective】The research was conducted to analysis the effects of soil physical and chemical properties on arbuscular mycorrhizal fungi(AMF)and glomalin-related proteins in the rhizosphere soil of afforestation tree species in coastal area of Jiangsu Province, which provided a theoretical support for AMF application in afforestation of coastal area.【Method】Eight different tree species [Carya illinoensis (Wangenh.)K. Koch, Populus lasiocarpa Oliv, Metasequoia glyptostroboides Hu et Cheng, Zelkova serrata(Thunb.)Makinoz, Taxodium ‘Zhongshanshan’, Eucommia ulmoides Oliv, Ginkgo biloba Linn, Elaeagnus pungens Thunb.] of Dafeng Forest Farm were selected as objects. We certificated the relationship between AMF and soil factors based on redundancy and path analysis.【Result】 The highest colonization of AMF was C. illinoensis and the lowest was G. biloba; the highest spore density was E. ulmoides and the lowest was G. biloba. The highest content of total glomalin-related soil protein(T-GRSP)was Z. serrata and the lowest was T. ‘Zhongshanshan’; the highest content easily extractable glomalin-related soil protein(EE -GRSP)was P. lasiocarpa and the lowest was G. biloba. There was a negative correlation between AMF colonization and soil total phosphorus content significantly(P<0.01). The T-GRSP was significant and negative correlation with soil pH(P<0.01), positive correlation with available potassium(P<0.01)and organic carbon in soil(P<0.01). EE-GRSP was positive correlation with total sodium(P<0.01)and negative correlation with total phosphorus content(P<0.05). There was no significant relationship between spore density and soil factors. The results of path analysis showed that soil total phosphorus had the strongest direct effect on AMF colonization rate and soil total potassium, soil conductivity was followed. Soil available potassium had the strongest direct effect on T-GRSP content, and soil pH, soluble organic carbon, total sodium, conductivity were followed; the nitrate nitrogen on T-GRSP content was showed the indirect effect. The direct role of total sodium on EE-GRSP was the strongest, the conductivity and total phosphorus were the second. And the indirect effect on EE-GRSP was total potassium.【Conclusion】AMF colonization was detected in 8 tree species and soil factors had a significant effect on the mutual symbiotic relationship between AMF and tree species.

References

[1] 陶钰敏. 江苏滩涂土地开发经济效益研究[J].湖北农业科学,2018,57(19):59-62.DOI:10.14088/j.cnki.issn0439-8114.2018.19.012. TAO Y M.Study on economic benefits of land development in Jiangsu tidal flat[J]. Hubei Agricultural Sciences, 2018,57(19):59-62. [2] 冯渊圆,胡海波,祝文斌,等.苏北沿海林农复合经营系统环境特征及农作物光合特性[J].江苏农业学报,2019,35(1):96-102. DOI:10.3969/j.issn.1000-4440.2019.01.014. FENG Y Y, HU H B, ZHU W B, et al. Study on environmental characteristics and photosynthesis characteristics of crops for agroforestry management systems in northern Jiangsu Province[J]. Jiangsu Journal of Agricultural Sciences,2019,35(1):96-102. [3] 向丹,徐天乐,李欢,等. 丛枝菌根真菌的生态分布及其影响因子研究进展[J].生态学报, 2017,37(11):3597-3606. DOI:10.5846/stxb201603280563. XIANG D, XU T L, LI H, et al. Ecological distribution of arbuscular mycorrhizal fungi and the influencing factors[J].Acta Ecologica Sinica, 2017,37(11):3597-3606. [4] 郭延军. AM真菌与土壤因子的相关性研究[D]. 呼和浩特:内蒙古大学, 2014. GUO Y J.Study on correlations between AM fungi and soil factors: taking DaLiuTa Coal Mine as an example [D]. Huhhot: Inner Mongolia University, 2014. [5] HILDEBRANDT U, JANETTA K, OUZIAD F, et al. Arbuscular mycorrhizal colonization of halophytes in central European salt marshes[J]. Mycorrhiza, 2001,10(4):175-183. DOI:10.1007/s005720000074. [6] 揣泽尧, 王冬梅. 菌根真菌增强植物抗盐碱胁迫能力的研究进展[J]. 华北农学报, 2010,25(b12):254-258. DOI:10.7668/hbnxb.2010.s2.055. CHUAI Z Y, WANG D M. Resource status of mycorrhizal fungi increase plant saline-alkaline tolerance[J]. Acta Agriculturae Boreali-Sinica, 2010,25(b12):254-258. [7] CRUZ C, CORREIA P, RAMOS A, et al. Arbuscular mycorrhiza in physiological and morphological adaptations of mediterranean plants[J]. Mycorrhiza, 2008:733-752. DOI:10.1007/978-3-540-78826-3_34. [8] 张倩. 植物相互作用与丛枝菌根真菌[D]. 杭州:浙江大学, 2011. ZHANG Q. Plant-plant interactions and arbuscular mycorrhizal fungi[D]. Hangzhou: Zhejiang University,2011. [9] 曹梦, 唐中华, 赵龙, 等. 苏打盐碱化土壤pH与团聚体中球囊霉素相关土壤蛋白含量的关系[J].土壤,2018,50(2):319-325. DOI:10.13758/j.cnki.tr.2018.02.014. CAO M, TANG Z H, ZHAO L, et al. Soil pH effect on glomalin-related soil protein in aggregates in sodic-saline soil[J]. Soils, 2018,50(2):319-325. [10] 杨思存,霍琳,王成宝,等.绿洲盐化潮土有效锌含量与盐分离子的相关性及通径分析[J].土壤,2017,49(3):550-557. DOI:10.13758/j.cnki.tr.2017.03.018. YANG S, HUO L, WANG C B, et al. Correlation and path analyses of available zinc contents and salt ions in saline fluvo-aquic soil of Hexi Oasis area[J]. Soils, 2017,49(3):550-557. [11] 朱凌骏, 傅致远, 张金池, 等. 菌根真菌对榉树光合特性的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(6):121-127. DOI: 10.3969 /j.issn.1000-2006.201801031. ZHU L J, FU Z Y, ZHANG J C, et al. Effects of mycorrhizal fungi on photosynthetic characteristics of Zelkova serrata Thunb[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2018,42(6):121-127. [12] LIN X, FENG Y, ZHANG H, et al. Long-term balanced fertilization decreases arbuscular mycorrhizal fungal diversity in an arable soil in North China revealed by 454 pyrosequencing[J]. Environmental Science & Technology, 2012,46(11):5764-5771. DOI:10.1021/es3001695. [13] HAZARD C, GOSLING P, GAST CJVD, et al. The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale[J]. Isme Journal, 2013,7(3):498-508.DOI:10.1038/ismej.2012.127. [14] 张峰峰, 唐明, 盛敏, 等. 甘肃盐碱土植物VA菌根真菌侵染研究[J]. 西北植物学报, 2007,27(1):115-120. DOI:10.3321/j.issn:1000-4025.2007.01.020. ZHANG F F, TANG M, SHENG M, et al. VA mycorrhizal fungi infecting plants in saline-alkali soil of Gansu[J]. Acta Botanica Boreali-Occidentalia Sinica, 2007,27(1):115-120. [15] 岳英男. 不同盐度样地羊草丛枝菌根真菌侵染状况比较[J]. 北方农业学报,2014(4):2527.DOI:10.3969/j.issn.10070907.2014.04.010. YUE Y N.Comparison on the colonization of Leymus chinense arbuscular mycorrhizal in different salinities[J]. Journal of Northern Agriculture, 2014(4):25-27. [16] 叶文雨. 豫西黄土高原主要造林树种菌根研究[D]. 杨凌:西北农林科技大学, 2006. YE W Y.Study on mycorrhizalization of major tree species for afforestation in the Loess plateau of West Henan Province[D]. Yangling: Northwest A&F University, 2006. [17] 鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社, 2013. BAO S D. Soil agricultural chemistry analysis[M]. Beijing: China Agriculture Press, 2013. [18] 刘润进, 李晓林. 丛枝菌根及其应用[M]. 北京:科学出版社, 2000. LIU R J, LI X L. Application of mycorrhizal fungi[M]. Beijing: Science Press, 2000. [19] IANSON DC, ALLEN MF. The effects of soil texture on extraction of vesicular-arbuscular mycorrhizal fungal spores from arid sites[J]. Mycologia, 1986,78(2):164-168. DOI:10.2307/3793161. [20] SCHENCK N, PEREZ-COLLINS Y. Manual for the identification of VA mycorrhizal fungi[M]. Cambridgeshire: Cambradge University Printing House, 1990. [21] BEDINI S, PELLEGRINO E, AVIO L, et al. Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices[J]. Soil Biology & Biochemistry, 2009,41(7):1491-1496. DOI: 10.1016/j.soilbio.2009.04.005. [22] 杜家菊, 陈志伟. 使用SPSS线性回归实现通径分析的方法[J]. 生物学通报, 2010,45(2):4-6. DOI:10.3969/j.issn.0006-3193.2010.02.002. DU J J, CHEN Z W.Method for achieving path analysis using SPSS linear regression[J]. Bulletin of Biology, 2010,45(2):4-6. [23] EDWARDS J R, LAMBERT L S. Methods for integrating moderation and mediation: a general analytical framework using moderated path analysis.[J]. Psychological Methods, 2007, 12(1):1-22. DOI: 10.1037/1082-989X.12.1.1. [24] 蔡晓布, 彭岳林, 冯固, 等. 西藏高原草地植物AM真菌多样性及其环境影响因子研究[J]. 土壤学报, 2005,42(4):642-651. DOI:10.11766/trxb200407050416. CAI X B, PENG Y L, FENG G, et al. AM fungi diversity and their environmental factors in altiplano grassland in Tibet[J]. Acta Pedologica Sinica, 2005,42(4):642-651. [25] ULTRA V U, TANAKA S, SAKURAI K, et al. Effects of arbuscular mycorrhiza and phosphorus application on arsenic toxicity in sunflower(Helianthus annuus L.)and on the transformation of arsenic in the rhizosphere[J]. Plant & Soil, 2007, 290(1/2):29-41. DOI: 10.1007/s11104-006-9087-2. [26] 杨玉海, 陈亚宁, 李卫红. 荒漠河岸林植物丛枝菌根真菌侵染及环境影响因子——以塔里木河下游为例[J]. 自然科学进展, 2008,18(4):397-405. DOI: 10.3321/j.issn:1002-008X.2008.04.006. YANG Y H, CHEN Y N, LI W H.Infection of arbuscular mycorrhizal fungi and environmental factors in desert riparian forest: a case study of lower Tarim River[J]. Progress in Natural Science, 2008,18(4):397-405. [27] 贺学礼, 陈程, 何博. 北方两省农牧交错带沙棘根围AM真菌与球囊霉素空间分布[J]. 生态学报, 2011,31(6):1653-1661. HE X L, CHEN C, HE B.Spatial distribution of arbuscular mycorrhizal fungi and glomalin of Hippophae rhamnoides L in farming-pastoral zone from the two northern provinces of China[J]. Acta Ecologica Sinica, 2011,31(6):1653-1661. [28] KENNEDY L J, TILLER R L, STUTZ J C. Associations between arbuscular mycorrhizal fungi and Sporobolus wrightii in riparian habitats in arid South-western North America[J]. Journal of Arid Environments, 2002, 50(3):470-475. DOI:10.1006/jare.2001.0899. [29] 方菲, 贺学礼. 旱生条件下柠条锦鸡儿AM真菌生态学研究[J]. 干旱地区农业研究, 2007,25(2):201-205. DOI:10.3321/j.issn:1000-7601.2007.02.041. FANG F, HE X L.Ecological research on arbuscular mycorrhizal fungi from the rhizospere of Caragana korshinskii in Northwest arid region[J].Agricultural Research in the Arid Areas, 2007,25(2):201-205. [30] 侯晓飞, 贺学礼. 荒漠植物羊柴根际AM真菌时空分布研究[J]. 河北农业大学学报, 2007,30(4):50-54. DOI:10.3969/j.issn.1000-1573.2007.04.012. HOU X F, HE X L.The spatio-temporal distribution of arbuscular mycorrhizal fungi from Hedysarum leave Maxim[J]. Journal of Agricultural University of Hebei, 2007,30(4):50-54. [31] SINGH P K, SINGH M, TRIPATHI B N. Glomalin: an arbuscular mycorrhizal fungal soil protein[J]. Protoplasma, 2013, 250(3):663-669. DOI:10.1007/s00709-012-0453-z. [32] 高秀兵,邢丹,陈瑶,等.茶树根际球囊霉素相关土壤蛋白含量及其与土壤因子的关系[J].茶叶科学,2016,36(2):191-200. DOI:10.13305/j.cnki.jts.2016.02.010. GAO X B,XING D,CHEN Y, et al. Contents of glomalin-related soil protein and its correlations with soil factors in the Rhizosphere of tea plant[J]. 2016,36(2):191-200. [33] 方燕, 唐明, 孙学广, 等. 不同气候条件下AM真菌资源与土壤理化性质的关系[J]. 西北农林科技大学学报(自然科学版), 2010,38(10):76-82. FANG Y, TANG M, SUN X G, et al. Relationship between AM fungi resources and soil factors under different climatic conditions[J]. Journal of Northwest A&F University, 2010,38(10):76-82. [34] 许加, 唐明. 铅锌矿污染区不同林木根际丛枝菌根真菌与土壤因子的关系[J]. 西北农林科技大学学报(自然科学版), 2013,41(5):75-80. XU J, TANG M. Relationhip between arbuscular mycorrhizal fungi and soil factors in the rhizosphere of different tree species in Pb-Zn polluted mine[J]. Journal of Northwest A&F University, 2013,41(5):75-80. [35] PURIN S, RILLIG M C. The arbuscular mycorrhizal fungal protein glomalin: limitations, progress, and a new hypothesis for its function[J]. Pedobiologia, 2008,51(2):123-130. DOI:10.1016/j.pedobi.2007.03.002. [36] PRADEEP KUMAR S, MEENAKSHI S, BHUMI NATH T. Glomalin: an arbuscular mycorrhizal fungal soil protein[J]. Protoplasma, 2013,250(3):663-669. DOI:10.1007/s00709-012-0453-z.

Last Update: 2019-07-22