[1]李瑞霞,凌 宁,郝俊鹏,等.林龄对侧柏人工林碳储量以及细根形态和生物量的影响[J].南京林业大学学报(自然科学版),2013,37(02):021-27.[doi:10.3969/j.issn.1000-2006.2013.02.004]
 LI Ruixia,LING Ning,HAO Junpeng,et al.Effects of stand ages on carbon storage, fine root morphology and biomass in Platycladus orientalis plantation[J].Journal of Nanjing Forestry University(Natural Science Edition),2013,37(02):021-27.[doi:10.3969/j.issn.1000-2006.2013.02.004]
点击复制

林龄对侧柏人工林碳储量以及细根形态和生物量的影响
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
37
期数:
2013年02期
页码:
021-27
栏目:
森林生态系统碳储量及碳密度研究专栏
出版日期:
2013-03-31

文章信息/Info

Title:
Effects of stand ages on carbon storage, fine root morphology and biomass in Platycladus orientalis plantation
作者:
李瑞霞凌 宁郝俊鹏闵建刚陈信力关庆伟*
南京林业大学森林资源与环境学院,江苏 南京 210037
Author(s):
LI Ruixia LING Ning HAO Junpeng MIN Jiangang CHEN Xinli GUAN Qingwei*
College of Forest Resources and Environment, Nanjing Forestry University, Nanjing 210037, China
关键词:
侧柏人工林 碳储量 林龄 细根生物量 细根形态
Keywords:
Platycladus orientalis plantation carbon storage stand age fine root biomass fine root morphology
分类号:
S718
DOI:
10.3969/j.issn.1000-2006.2013.02.004
文献标志码:
A
摘要:
以徐州侧柏人工林为研究对象,运用生物量转化方程及土壤调查数据分析了3种林龄下(40、48和55 a)生态系统碳储量的变化及其机制。结果表明:(1)乔木层碳储量在系统碳储量中所占比例随林龄增加呈上升趋势,土壤层碳储量比例呈下降趋势,灌草层和枯落物层碳储量随林龄增加无明显变化。整个系统的碳储量随着林龄增加而增加,其中55年生侧柏人工林生态系统碳储量为109.55 t/hm2,分别是40和48年生的1.22倍和1.09倍,而这种差异主要是由乔木层和土壤层碳储量差异引起。(2)细根生物量方面,细根中低级根(1~3级根)生物量在不同林龄林分中无显著差异,高级根(4、5级根)和总生物量随林龄的增大而明显减少。细根形态方面,与40 a的相比,在表层土壤中,48年生林5级根的直径显著降低,5级根的根长和1级根的比根长显著提高; 55年生林4级根的直径和根长以及1级根的比根长显著提高。在亚表层土壤,48年生林3级根的直径和4级根的根长显著增加,1级和2级根的比根长显著降低; 55年生林3~5级根的直径和5级根的根长显著提高,3级根的根长以及1级和5级根的比根长显著降低。(3)3级根的直径与土壤层碳储量显著负相关,5级根与生态系统总碳储量显著正相关。2级和3级根的比根长与土壤层碳储量显著正相关,而3级根的比根长与乔木层碳储量、枯落物层碳储量和生态系统总碳储量显著负相关。4级和5级根的生物量与枯落物层碳储量显著正相关,与土壤层碳储量极显著负相关; 细根总生物量与乔木层碳储量和总碳储量极显著负相关,与灌木层和草本层碳储量显著负相关。因此,细根形态和生物量的变化可能是导致生态系统碳储量变化的因素之一。
Abstract:
The research focused on Xuzhou Platycladus orientalis plantation, to study the changes on carbon storage of the ecosystem and related mechanism in different stand ages(40, 48 and 55-yr-old)by applying biomass transformative equation and soil survey data. The results were as follows:(1)The percentage of carbon storage in tree layer rised with the increase of stand age. On contrast, the proportion of soil carbon storage was decreased. The carbon storage of the shrub, herb and floormass had no changes with the increase of stand age, while the whole ecosystem carbon storage rised with growing stand age. The total carbon storage of 55-yr-old stand was 109.55 t / hm2, respectively 1.22 times and 1.09 times as much as that of 40-yr-old stand and 48-yr-old stand. Yet, this difference was mainly caused by the different carbon storage of tree layer and soil layer.(2)Fine root biomass indicated that the 1st-3rd root order biomass was found non-significantly changed. Although the 4th-5th root order and total biomass significantly decreased with stand age. Fine root morphology showed: compared with 40-yr-old stand, in the surface soil layer, the diameter of 5th root order significantly decreased, while the root length of 5th root order and specific root length of 1st root order significantly increased in the 48-yr-old stand. The diameter and root length of 4th root order, and the specific root length of 1st root order significantly increased in the 55-yr-old stand. In the subsurface soil layer, the diameter of 3rd root order and the root length of 4th root order significantly increased, but the specific root length of 1st and 2nd root order significantly decreased in the 48-yr-old stand. The diameter of 3rd - 5th root order and the length of 5th root order significantly increased, although the length of 3rd root order and the specific root length of 1st and 5th root order significantly reduced in the 55-yr-old stand.(3)The relationship between the diameter of 3rd root order and soil carbon storage was significant negatively correlated, but the diameter of 5th root order positively correlated with total ecosystem carbon storage. The specific root length of 2nd and 3rd root order significant positively correlated with soil carbon storage, while the specific root length of 3rd root order significant negatively correlated with tree layer carbon storage and litter layer carbon storage and ecosystem carbon storage. The biomass of 4th and 5th root order with litter layer carbon storage significant positively correlated, and with soil carbon storage in very significant negative correlation. Total fine root biomass significantly positive correlated with tree layer carbon storage and total carbon storage, and positively correlated with shrub layer carbon storage and herb layer carbon storage. As the results, the changes of fine root morphology and biomass may be one of the factors that cause the changes of ecosystem carbon storage.

参考文献/References:

[1] Lal R. Forest soils and carbon sequestration [J]. Forest Ecology and Management, 2005, 220(1):242-258.
[2] Schulp C J E, Nabuurs G J, Verburg P H, et al. Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories [J]. Forest Ecology and Management, 2008, 256(3):482-490.
[3] Vallet P, Meredieu C, Seynave I, et al. Species substitution for carbon storage:Sessile oak versus Corsican pine in France as a case study [J]. Forest Ecology and Management, 2009, 257(4):1314-1323.
[4] Jiang H, Apps M J, Peng C H, et al. Modelling the influence of harvesting on Chinese boreal forest carbon dynamics[J]. Forest Ecology and Management, 2002, 169(1):65-82.
[5] Jandl R, Lindner M, Vesterdal L, et al. How strongly can forest management influence soil carbon sequestration[J]. Geoderma, 2007, 137(3/4):253-268.
[6] Nave L E, Vance E D, Swanston C W, et al. Impact of elevated N inputs on north temperate forest soil storage, C/N, and net N mineralization [J]. Geoderma, 2009,153(2):231-240.
[7] Moscatelli M C, Lagornarsino A, De Angelis P, et al. Short-and medium-term contrasting effects of nitrogen fertilization on C and N cycling in a poplar plantation soil[J]. Forest Ecology and Management, 2008, 255(3):447-454.
[8] Alam A, Kilpelainen A, Kellomaki S. Impact of thinning on growth, timber production and carbon stocks in Finland under changing climate Scandinavian [J]. Journal of Forest Research, 2009, 23(6):501-512.
[9] Ryu S R, Concilio A, Chen J, et al. Prescribed burning and mechanical thinning effects on belowground conditions and soil respiration in a mixed-conifer forest, California [J]. Forest Ecology and Management, 2009, 257(4):1324-1332.
[10] 方晰,田大伦,项文化. 速生阶段杉木人工林碳素密度、贮量和分布[J]. 林业科学,2002,38(3):14-19. Fang X, Tian D L, Xiang W H. Density, storage and distribution of carbon in Chinese fir plantation at fast growing stage[J]. Scientia Silvae Sinicae, 2002, 38(3):14-19.
[11] Matthias Peichl, Altaf Arain M. Above-and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests[J]. Agricultural and Forest Meteorology, 2006,140:51-63.
[12] 尉海东,马祥庆. 中亚热带不同发育阶段杉木人工林生态系统碳贮量研究[J]. 江西农业大学学报,2006,28(2):239-243. Wei H D, Ma X Q. A study on the carbon storage and distribution in Chinese fir plantation ecosystem of different growing stages in mid-subtropical zone[J]. Acta Agriculturae Universitatis Jiangxiensis, 2006, 28(2):239-243.
[13] 王婷,袁志良,叶永忠,等. 嵩山国家森林公园不同年龄侧柏人工林生物量初步研究[J]. 河南科学,2009,27(7):817-820. Wang T, Yuan Z L, Ye Y Z, et al. Primary study on biomass of platycladus orientalis plantation at different age stands in the Songshan Mountains National Forest Park[J]. Henan Science, 2009, 27(7):817-820.
[14] 马炜,孙玉军,郭孝玉,等. 不同林龄长白落叶松人工林碳储量[J]. 生态学报,2010,30(17):4659-4667. Ma W, Sun Y J, Guo X Y, et al. Carbon storage of Larix olgensis plantation at different stand ages[J]. Acta Ecologica Sinica, 2010, 30(17):4659-4667.
[15] 曹吉鑫. 北京北部山区不同林龄的油松和侧柏人工林碳库研究[D]. 北京:北京林业大学,2011. Can J X. Above-and belowground carbon pools in different ages of Chinese pine and oriental arborvitae plantation forests in northern mountain areas of Beijing[D]. Beijing:Beijing Forestry University, 2011.
[16] 巨文珍,王新杰,孙玉军. 长白落叶松林龄序列上的生物量及碳储量分配规律[J]. 生态学报,2011, 31(4):1139-1148. Ju W Z, Wang X J, Sun Y J. Age structure effects on stand biomass and carbon storage distribution of Larix olgensis plantation[J]. Acta Ecologica Sinica, 2011, 31(4):1139-1148.
[17] Vesterdal L, Riter E, Gundersen P. Change in soil organic carbon following afforestation of former arable land[J]. Forest Ecology and Management, 2002, 169:137-147.
[18] 黄宇,冯宗炜,汪思龙,等. 杉木、火力楠纯林及其混交林生态系统C、N贮量[J]. 生态学报,2005,25(12):3146-3154. Huang Y, Feng Z W, Wang S L. C and N stocks under three plantation forest ecosystems of Chinese-fir, Michelia macclurei and their mixture[J]. Acta Ecologica Sinica, 2005, 25(12):3146-3154.
[19] Vogt K A, Vogt D J, Palmiotto P A, et al. Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species[J]. Plant and Soil, 1995, 187:159-219.
[20] 张莉,刘建忠,钱桂芝. 徐州城市森林建设探讨[J]. 中国林业,2008(11):38-39. Zhang L, Liu J Z, Qian G Z. Discussion on Xuzhou city forest construction[J]. China Forestry, 2008(11):38-39.
[21] 李朝. 侧柏人工林生物量研究[D].南京:南京林业大学,2010. Li Z. Study on biomass of Platyclatdus orientalis plantation in Xuzhou [D]. Nanjing:Nanjing Forestry University, 2010.
[22] IPCC guidelines for national greenhouse gas inventories, prepared by the national greenhouse gas Inventories programme[C]∥Eggleston H S, Buendia L, Miwa K, et al. IPCC. IPCC/IGES. Hayama:Japan, 2006.
[23] Pregitzer K S, Deforest J L, Burton A J, et al. Fine root architecture of nine North American trees [J]. Ecological Monographs, 2002, 72:293-309.
[24] Guo D L, Mitchell R J, Hendricks J J. Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest [J]. Oecologia, 2004, 140:450-457.
[25] Wang Z Q, Guo D L, Wang X R, et al. Fine root architecture, morphology and biomass of different branch orders of two Chinese temperate tree species[J]. Plant and Soil, 2006, 288:155-171.
[26] Guo D, Xia M X, Wei X, et al. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species[J]. New Phytol, 2008b, 180(3):673 683.
[27] Pregitzer K S, DeForest J L, Burton A J, et al. Fine root architecture of nine North American trees[J]. Ecol Monogr, 2002, 72:293 309.
[28] 贾淑霞,赵妍丽,丁国泉,等. 落叶松和水曲柳不同根序细根形态结构、组织氮浓度与根呼吸的关系[J]. 植物学报,2010,45:174-181. Jia S X, Zhao Y L, Ding G Q, et al. Relationship among fine-root morphology, anatomy, tissue nitrogen concentration and respiration in different branch root orders in Larix gmelinii and Fraxinus mandshurica[J]. Chinese Bulletin of Botany, 2010, 45:174-181.
[29] Agren G I, Bosatta E. Theoretical Ecosystem Ecology:Understanding Nutrient Cycles [M]. Cambridge:Cambridge University Press, UK,1996.
[30] Guo L B, Halliday M J, Siakimotu S J M, et al. Fine root production and litter input:Its effects on soil carbon [J]. Plant Soil,2005, 272:1-10.
[31] 林希昊,王真辉,陈秋波,等. 不同树龄橡胶(Hevea brasiliensis)林细根生物量的垂直分布和年内动态[J]. 生态学报,2008,28(9):4128-4135. Lin X H, Wang Z H, Chen Q B, et al. Vertical distribution and annual dynamics of fine roots of Hevea brasiliensis at different ages[J]. Acta Ecologica Sinica, 2008, 28(9):4128-4135.
[32] Reiji F, Ryunosuke T, Naoko T. Root development across a chronosequence in a Japanese cedar(Cryptomeria japonica D.Don)plantation[J]. Journal of Forest Research, 2007(4):96-102.
[33] Eissenstat D M, Yanai R D. The ecology of root lifespan[J]. Advances in Ecological Research, 1997, 27:1-60.
[34] Wells C E, Eissenstat D M. Beyond the roots of young seedlings:The influence of age and order on fine root physiology [J]. Journal of Plant Growth Regulation, 2002, 21:324-334.
[35] 康冰,刘世荣,蔡道雄,等. 马尾松人工林林分密度对林下植被及土壤性质的影响[J]. 应用生态学报,2009,20(10):2323-2331. Kang B, Liu S R, Cai D X, et al. Effects of Pinus massoniana plantation stand density on understory vegetation and soil properties[J]. Chinese Journal of Applied Ecology, 2009, 20(10):2323-2331.
[36] Burton A J, Pregitzer K S, Hendrick R L. Relationships between fine root dynamics and nitrogen availability in Michigan Northern Hardwood forests [J]. Oecologia, 2000, 125(3):389-399.
[37] Pregizer K, King J S, Burton A J, et al. Research review:responses of tree fine roots to temperature [J]. New Phytol,2000, 147:105-115.

相似文献/References:

[1]尤海梅,藤原一绘.徐州低山丘陵区侧柏人工林群落的复杂性[J].南京林业大学学报(自然科学版),2011,35(06):034.[doi:10.3969/j.jssn.1000-2006.2011.06.007]
 YOU Haimei,FUJIWARA Kazue.Plant community complexity of Platycladus orienalis plantation in low elevation mountains and hills of Xuzhou[J].Journal of Nanjing Forestry University(Natural Science Edition),2011,35(02):034.[doi:10.3969/j.jssn.1000-2006.2011.06.007]
[2]曹 林,佘光辉*,代劲松,等.激光雷达技术估测森林生物量的研究现状及展望[J].南京林业大学学报(自然科学版),2013,37(03):163.[doi:10.3969/j.issn.1000-2006.2013.03.029]
 CAO Lin,SHE Guanghui*,DAI Jinsong,et al.Status and prospects of the LiDAR-based forest biomass estimation[J].Journal of Nanjing Forestry University(Natural Science Edition),2013,37(02):163.[doi:10.3969/j.issn.1000-2006.2013.03.029]
[3]蔡会德,张 伟,江锦烽,等.广西森林土壤有机碳储量估算及空间格局特征[J].南京林业大学学报(自然科学版),2014,38(06):001.[doi:10.3969/j.issn.1000-2006.2014.06.001]
 CAI Huide,ZHANG Wei,JIANG Jinfeng,et al.Estimation and distribution patterns of organic carbon stock in forest soil in Guangxi[J].Journal of Nanjing Forestry University(Natural Science Edition),2014,38(02):001.[doi:10.3969/j.issn.1000-2006.2014.06.001]
[4]方 岳,刘 华*,白志强,等.新疆喀纳斯保护区森林碳储量及碳密度研究[J].南京林业大学学报(自然科学版),2014,38(06):017.[doi:10.3969/j.issn.1000-2006.2014.06.004]
 FANG Yue,LIU Hua*,BAI Zhiqiang,et al.Spatial pattern of carbon storage and carbon density in forest vegetation of the Kanas National Natural Reserve[J].Journal of Nanjing Forestry University(Natural Science Edition),2014,38(02):017.[doi:10.3969/j.issn.1000-2006.2014.06.004]
[5]费菲,肖文娅,刁娇娇,等.林窗尺度对侧柏人工林植物多样性的短期影响[J].南京林业大学学报(自然科学版),2017,41(05):072.[doi:10.3969/j.issn.1000-2006.201605001]
 FEI Fei,XIAO Wenya,DIAO Jiaojiao,et al.Short-term influence of forest-gap size on plant diversity in a Platycladus orientalis plantation[J].Journal of Nanjing Forestry University(Natural Science Edition),2017,41(02):072.[doi:10.3969/j.issn.1000-2006.201605001]
[6]孟 雪,刘雪惠,高媛赟,等.基于区域转换因子的不同立地质量阔叶林碳储量估测[J].南京林业大学学报(自然科学版),2017,41(06):087.[doi:10.3969/j.issn.1000-2006.201606027]
 MENG Xue,LIU Xuehui,GAO Yuanyun,et al.Remote sensing estimation of different site-quality broadleaved forest carbon budget in Jiande,Zhejiang[J].Journal of Nanjing Forestry University(Natural Science Edition),2017,41(02):087.[doi:10.3969/j.issn.1000-2006.201606027]
[7]范立红,朱建华*,李 奇,等.三峡库区土地利用/覆被变化对碳储量的影响[J].南京林业大学学报(自然科学版),2018,42(04):053.[doi:10.3969/j.issn.1000-2006.201707018]
 FAN Lihong,ZHU Jianhua*,LI Qi,et al.Effects of changes in land use and cover on carbon storage in the Three Gorges Reservoir Area[J].Journal of Nanjing Forestry University(Natural Science Edition),2018,42(02):053.[doi:10.3969/j.issn.1000-2006.201707018]
[8]吴国训,唐学君,阮宏华*,等.基于森林资源清查的江西省森林碳储量及固碳潜力研究[J].南京林业大学学报(自然科学版),2019,43(01):105.[doi:10.3969/j.issn.1000-2006.201711051]
 WU Guoxun,TANG Xuejun,RUAN Honghua*,et al.Carbon storage and carbon sequestration potential based on forest inventory data in Jiangxi Province, China[J].Journal of Nanjing Forestry University(Natural Science Edition),2019,43(02):105.[doi:10.3969/j.issn.1000-2006.201711051]

备注/Memo

备注/Memo:
收稿日期:2012-07-01 修回日期:2013-01-14
基金项目:国家林业公益性行业科研专项项目(201104075); 国家重点基础研究发展计划(2012CB416904)
第一作者:李瑞霞,博士生。*通信作者:关庆伟,教授。E-mail: guanjapan999@yahoo.com.cn。
引文格式:李瑞霞,凌宁,郝俊鹏,等. 林龄对侧柏人工林碳储量以及细根形态和生物量的影响[J]. 南京林业大学学报:自然科学版,2013,37(2):21-27.
更新日期/Last Update: 2013-03-31