[1]王增利,刘学军.DEM对大地水准面精化的影响分析[J].南京林业大学学报(自然科学版),2014,38(01):145-150.[doi:10.3969/j.issn.1000-2006.2014.01.026]
 WANG Zengli,LIU Xuejun.Analysis of errors introduced by DEM in geoid refinement[J].Journal of Nanjing Forestry University(Natural Science Edition),2014,38(01):145-150.[doi:10.3969/j.issn.1000-2006.2014.01.026]
点击复制

DEM对大地水准面精化的影响分析
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
38
期数:
2014年01期
页码:
145-150
栏目:
研究论文
出版日期:
2014-02-16

文章信息/Info

Title:
Analysis of errors introduced by DEM in geoid refinement
文章编号:
1000-2006(2014)01-0145-06
作者:
王增利12刘学军1
1.南京师范大学虚拟地理环境教育部重点实验室,江苏 南京 210046;
2.南京林业大学土木工程学院,江苏 南京 210037
Author(s):
WANG Zengli12 LIU Xuejun1
1. Key Laboratory of Virtual Geographic Environment,Ministry of Education,Nanjing Normal University,Nanjing 210046,China;
2. College of Civil Engineering,Nanjing Forest University,Nanjing 210037,China
关键词:
大地水准面 DEM 地形改正 积分半径 分辨率
Keywords:
geoid DEM terrain correction integral radius resolution
分类号:
P225
DOI:
10.3969/j.issn.1000-2006.2014.01.026
文献标志码:
A
摘要:
对厘米级大地水准面精化中影响地形改正精度的几个因子:DEM精度、分辨率及积分半径进行了分析和评价。通过对地形质量影响的球谐展开分析,推导并量化了地形质量与DEM之间的线性关系,从而得到DEM精度至少需达到81 m; 综合分析DEM分辨率与球谐展开级数、积分半径之间的相互关系,给出适合厘米级大地水准面精化的分辨率和积分半径。以我国地表起伏较大的西藏某区为研究区域,选取不同分辨率DEM、不同积分半径,并利用SRTM计算地形影响。结果表明,6″分辨率的DEM和50’的积分半径可以满足大地水准面的厘米级精度要求。
Abstract:
There’re several factors affecting the accuracy of terrain correction to obtain geoid with centimeter-level: accuracy of DEM,resolution and the integral radius. Derive the linear relationship between DEM and terrain correction by computing the spherical harmonic expansions. The result showed that the accuracy of DEM should be better than 81m. After the relationship between resolution and the degree of spherical harmonic expansions and integral radiusanalyzed, the best suitable factors for geoid with centimeter-level was giant.This article chosed different resolution and different integral radius to compute terrain correction with DEM of Tibet. The test results showed that the resolution of 6″ DEM could meet the needs of geoid with centimeter-level. And it needs 50’ integral radius to meet the corresponding requirements.

参考文献/References:

[1] 管泽霖,宁津生.地球形状与外部重力场[M].北京:测绘出版社, 1981.
[2] 李娜,章传银.用逆Vening-Meinesz公式反演海洋重力场时积分半径的选择[J].大地测量与地球动力学,2009,29(6):126-129.Li N,Zhang C Y.Option of integral radius in inversion of sea gravity with inverse Vening-Meinesz formula[J].Journal of Geodesy and Geodynamics,2009,29(6):126-129.
[3] 楼立志,方剑,许厚泽.界面起伏对模拟大地水准面的影响[J].同济大学学报:自然科学版,2006,34(6):848-852.Lou L Z,Fang J,Xu H Z.Effects of interface undulations on simulated geoid[J].Journal of Tongji University:Natural Sciences Edition,2006,34(6):848-852.
[4] 翟振和,孙中苗.海面高数据与平均重力异常误差传播的球谐分析[J].大地测量与地球动力学,2010,30(2):137-140.Zhai Z H,Sun Z M.Spherical harmonic analysis of error propagation between mean gravity anomaly and sea surface height data[J]. Journal of Geodesy and Geodynamics,2010,30(2):137-140.
[5] 王增利,文琳. 一种地形改正新算法[J].大地测量与地球动力学,2011,31(3):115-119. Wang Z L,Wen L.A new terrain correction method[J]. Journal of Geodesy and Geodynamics,2011,31(3):115-119.
[6] 罗志才,陈永奇,宁津生.地形对确定高精度局部大地水准面的影响[J].武汉大学学报:信息科学版,2003,28(3):340-344.Luo Z C,Chen Y Q,Ning J S.Effect of terrain on the determination of high precise local gravimetric geoid[J]. Geomatics and Information Science of Wuhan University,2008,28(3):340-344.
[7] 丁剑.高精度似大地水准面精化中若干问题研究[D].北京:中国测绘科学研究院,2006.Ding J.Investigations on some problems in high-precision quasi-geoid determination[D]. Beijing:Institute of Geodesy and Geodynamics, Chinese Academy of Surveying and Mapping,2006.
[8] Kiamehr R, Sjoberg L E. Effect of the SRTM global DEM on the determination of a high-resolution geoid model: a case study in Iran[J].J Geoid,2005,79:540-551.
[9] Abd-Elmotaal H A, Kuhtreiber N. Geoid determination using adapted reference field,seisc Moho depths and variable density contrast[J].Journal of Geodesy,2003,77:77-85.
[10] Merry C L. DEM-induced errors in developoing a quasi-geoid model for Africa[J]. Journal of Geodesy,2003,77:537-542.
[11] ESjoberg L. A computational scheme to model the geoid by the modified Stokes formula without gravity reductions[J].Journal of Geodesy,2003,77:423-432.
[12] ESjoberg L. A spherical harmonic representation of the ellipsoidal correction to the modified Stokes formula[J].Journal of Geodesy,2004,78:180-186.
[13] Sun W,ESjoberg L. Convergence and optimal truncation of binomial expansions used in isostatic compensations and terrain corrections[J].Journal of Geodesy, 2001,74:627-636.
[14] ESjoberg L, Nahavandchi H. On the indirect effect in the Stokes-Helmert method of geoid determination[J].Journal of Geodesy,1999,73:87-93.
[15] Nahavandchi H, ESjoberg L. Terrain corrections to power H3 in gravimetric geoid determination[J].Journal of Geodesy,1998,72:124-135.

备注/Memo

备注/Memo:
收稿日期:2012-11-15 修回日期:2013-03-18
基金项目:国家自然科学基金项目(40971230)
第一作者:王增利,实验师,硕士。E-mail: wzl20012001_2001@163.com。
引文格式:王增利,刘学军. DEM对大地水准面精化的影响分析[J]. 南京林业大学学报:自然科学版,2014,38(1):145-150.
更新日期/Last Update: 2014-01-15