[1]杨春霞,胥猛,王明庥,等.植物中miR160/miR167/miR390家族及其靶基因研究进展[J].南京林业大学学报(自然科学版),2014,38(03):155-159.[doi:10.3969/j.issn.1000-2006.2014.03.030]
 YANG Chunxia,XU Meng,WANG Mingxiu,et al.Advance on miR160/miR167/miR390 family and its target genes in plants[J].Journal of Nanjing Forestry University(Natural Science Edition),2014,38(03):155-159.[doi:10.3969/j.issn.1000-2006.2014.03.030]
点击复制

植物中miR160/miR167/miR390家族及其靶基因研究进展
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
38
期数:
2014年03期
页码:
155-159
栏目:
综合述评
出版日期:
2014-05-15

文章信息/Info

Title:
Advance on miR160/miR167/miR390 family and its target genes in plants
文章编号:
1000-2006(2014)03-0155-05
作者:
杨春霞12胥猛1王明庥1黄敏仁1*
1.南京林业大学森林资源与环境学院,江苏 南京 210037;
2.江西省林业科学院,江西 南昌 330013
Author(s):
YANG Chunxia12 XU Meng1 WANG Mingxiu1 HUANG Minren1*
1.College of Forest Resource and Environment,Nanjing Forestry University,Nanjing 210037,China;
2.Jiangxi Academy of Forestry, Nanchang 330013, China
关键词:
microRNA 靶基因 沉默复合体 植物生长发育
Keywords:
microRNA target gene RNA-induced silencing complex(RISC) development of plant
分类号:
Q522
DOI:
10.3969/j.issn.1000-2006.2014.03.030
文献标志码:
A
摘要:
microRNA(miRNA)是真核生物中广泛存在的一类长21~23个核苷酸的非编码RNA分子,通过与靶基因mRNA的特异结合调节基因转录后表达,在调控细胞周期、生物体发育时序等方面起重要作用。miR160、miR167和miR390 3个miRNAs家族均为靶向ARF(Auxin Response Factor)基因家族,预示着它们在行使调控功能的过程中既有相似性又有特异性。笔者详细阐述了miR160/miR167/miR390在植物发育过程中的调控作用及与其靶基因之间的相互调控关系,发现miR160/miR167/miR390均在植物生长发育过程中发挥重要的作用,但miR160则侧重于调控胚胎和根的发育,miR167侧重于调控植物花和果实的发育,而miR390则对植物横向器官的发育具有调控作用,并且,miR160/miR167/miR390与其靶基因之间存在反馈调节作用。
Abstract:
MicroRNA(miRNA)is endogenous and non-coding small RNA with 21-23 nucleotides, and it widely exits in eukaryotes. MiRNAs repress gene expression at post transcriptional level by acting on near-perfect complementary sequences in mRNA coding region to guide cleavage and translational repression, and it plays an important role in regulating cell cycle and development timing of biology. Three miRNA families including miR160, miR167 and miR390 all targeting to ARF(Auxin response factor)gene family have been reviewed, and which indicates that they fulfil the similar and differential function. For example, miR160/miR167/miR390 plays an important role in plant development. But miR160 focuses on regulating embryo and root development, miR167 focuses on the regulation of flowers and fruit development, and miR390 has remarkable effect on regulating plant lateral organ development. Moreover, feedback regulation exists between miR160/miR167/miR390 and their target genes.

参考文献/References:

[1] Chen X. Small RNAs and their roles in plant development [J]. Annu Rev Cell Dev Biol, 2009, 25: 21-44.
[2] Baulcombe D. RNA silencing in plants [J]. Nature, 2004, 431: 356-363.
[3] Chen X M. microRNA biogenesis and function in plants [J]. FEBS Letters, 2005, 579: 5923-5931.
[4] Zhang L, Hou D X, Chen X, et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA [J]. Cell Research, 2012, 22(1):107-126.
[5] Millar A A, Waterhouse P M. Plant and animal microRNAs: similarities and differences [J]. Funct Integr Genomics, 2005, 5(3): 129-135.
[6] Rajewsky N. MicroRNA target predictions in animals [J]. Nat Genet, 2006, 38: S8-13.
[7] Bonnet E, Wuyts J, Rouze P, et al. Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes [J]. Proc Natl Acad Sci USA, 2004, 101(31): 11511-11516.
[8] Sunkar R, Zhu J K. Novel and stress regulated microRNAs and other small RNAs from Arabidopsis [J]. Plant Cell, 2004, 16(8): 2001-2019.
[9] Lytle J R,Yario T A,Steitz J A. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5’UTR as in the 3’UTR [J].Proc Natl Acad Sci U S A, 2007, 104(23): 9667-9672.
[10] Archak S, Nagaraju J. Computational prediction of rice(Oryza sativa)miRNA targets. genomics [J]. Proteomics & Bioinformatics, 2007, 5(3-4): 196-206.
[11] Palatnik J F, Allen X L, Wu C, et al. Weigel: Control of leaf morphogenesis by microRNAs [J]. Nature, 2003, 425: 257-263.
[12] Kidner C A. The many roles of small RNAs in leaf development [J]. J Genet Genomics, 2010, 37(1):13-21.
[13] Aukerman M J, Sakai H. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes [J]. Plant Cell, 2003, 15(11):2730-2741.
[14] Guo H S, Xie Q, Fei J F, et al. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development [J]. Plant Cell, 2005, 17(5): 1376-1386.
[15] Schwab R, Palatnik J F, Riester M, et al. Specific effects of microRNAs on the plant transcriptome [J]. Developmental Cell, 2005, 8(4): 517-527.
[16] Chen H, Li Z, Xiong L. A plant microRNA regulates the adaptation of roots to drought stress [J]. FEBS Lett, 2012, 586: 1742-1747.
[17] Subramanian S. MicroRNA regulation of symbiotic nodule development in legumes [J]. MicroRNA in Plant Development and Stress Response, 2012, 15: 177-195.
[18] Chellappan P, Vanitharani R, Fauquet C M. MicroRNA-binding viral protein interferes with Arabidopsis development [J]. Proc Natl Acad Sci USA, 2005, 102(29): 10381-10386.
[19] Válóczi A, Várallyayé, Kauppinen S, et al. Spatio-temporal accumulation of microRNAs is highly coordinated in developing plant tissue [J]. The Plant Journal, 2006, 47(1): 140-151.
[20] Rhoades M W, Reinhart B J, Lim L P, et al. Prediction of plant microRNA targets [J]. Cell, 2002, 110(4): 513-520.
[21] Mallory A C, Bartel D P, Bartel B. MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes [J]. The Plant Cell, 2005, 17(5): 1360-1375.
[22] Wang J W, Wang L J, Mao Y B, et al. Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis [J]. Plant Cell, 2005, 17(18): 2204-2216.
[23] Li B S, Duan H, Li J G, et al. Global identification of miRNAs and targets in Populus euphratica under salt stress [J]. Plant Mol Biol, 2013, 81(16): 525-539.
[24] Liu P P, Montgomery T A, Fahlgren N, et al. Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages [J]. The Plant Journal, 2007, 52(1):133-146.
[25] Liu X D, Huang J, Wang Y, et al. The role of floral organs in carpels, an Arabidopsis loss-of-function mutation in MicroRNA160a, in organogenesis and the mechanism regulating its expression [J]. The Plant Journal, 2010, 62(3):416-428.
[26] Hendelmen A, Buxdorfk, Stav R, et al. Inhibition of lamina oatgrowth following solanam Lycopersioum AUXIN RESPONSE FACTORIO(SIARF10)derepression[J]. Plant Mol Biol, 2012, 78:261-476.
[27] Meng Y J, Wu P, Chen M. MicroRNAs in plant roots: current understanding and future perspectives [J]. Non Coding RNAs in Plants RNA Technologies, 2011:269-284.
[28] Yin X C, Wang J, Cheng H, et al. Detection and evolutionary analysis of soybean miRNAs responsive to soybean mosaic virus [J]. Planta, 2013, 237(5):1213-1225
[29] Sunkar R, Jagadeeswaran G. In silico identification of conserved microRNAs in large number of diverse plant species [J]. BMC Plant Biology, 2008, 8: 37.
[30] Goetz M, Vivian-Smith A, Johnson S D, et al. AUXIN RESPONSE FACTOR8 is a negative regulator of fruit initiation in Arabidopsis[J]. The Plant Cell, 2006, 18(8): 1873-1886.
[31] Goetz M, Hooper L C, Johnson S D, et al. Expression of aberrant forms of AUXIN RESPONSE FACTOR8 stimulates parthenocarpy in Arabidopsis and tomato [J]. Plant Physiology, 2007, 145(2): 351-366.
[32] Varaud E, Brioudes F, Szecsi J, et al. AUXIN RESPONSE FACTOR8 regulates Arabidopsis petal growth by interacting with the bHLH transcription factor BIGPETALp [J]. The Plant Cell, 2011, 23(3): 973-983.
[33] Nagpal P, Ellis C M, Weber H, et al. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and ower maturation [J]. Development, 2005, 132(18): 4107-411.
[34] Ru P, Xu L, Ma H, et al. Plant fertility defects induced by the enhanced expression of microRNA167 [J]. Cell Research, 2006, 16(5): 457-465.
[35] Wu M F, Tian Q, Reed J W. Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction [J]. Development, 2006, 133(21): 4211-4218.
[36] Yang J H, Han S J, Yoon E K, et al. Evidence of an auxin signal pathway, microRNA167-ARF8-GH3, and its response to exogenous auxin in cultured rice cells [J]. Nuclec Acids Res, 2006, 34(6): 1892-1899.
[37] Gutierrez L, Bussell J D, Pacurar D I, et al. Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of auxin response factor transcripts and microRNA abundance [J]. Plant Cell, 2009, 21:3119-3132.
[38] Meng Y, Huang F, Shi Q, et al. Genome-wide survey of rice microRNAs and microRNA-target pairs in the root of a novel auxin-resistant mutant [J]. Planta, 2009, 230(5): 883-898.
[39] Allen E, Xie Z, Gustafson A M, et al. MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants [J]. Cell, 2005, 121(2): 207-221.
[40] Williams L, Carles C C, Osmont K S, et al. A database analysis method identifies an endogenous trans-acting short-interfering RNA that targets the Arabidopsis ARF2, ARF3, and ARF4 genes [J]. Proc Natl Acad Sci USA, 2005,102(27): 9703-9708.
[41] Garcia D, Collier S A, Byrne M E, et al. Specification of leaf polarity in Arabidopsis via the trans-acting siRNA pathway [J]. Curr Biol. 2006,16(9): 933-938.
[42] Cho S H, Coruh C, Axtell M J. miR156 and miR390 regulate tasiRNA accumulation and developmental timing in Physcomitrella patens [J]. The plant cell, 2012, 24(12): 4837-4849.
[43] Marin E, Jouannet V, Herz A, et al. miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an auto-regulatory network quantitatively regulating lateral root growth[J]. Plant Cell, 2010, 22(4): 1104-1117.
[44] Yoon E K, Yang J H, Lim J, et al. Auxin regulation of the microRNA390-dependent trans-acting small interfering RNA pathway in Arabidopsis lateral root development[J]. Nucleic Acids Res, 2010, 38(4): 1382-1391.
[45] Wang J, Gao X, Li L, et al. Overexpression of Osta-siR2141 caused abnormal polarity establishment and retarded growth in rice [J]. J Exp Bot, 2010, 61(6): 1885-1895.
[46] Kinoshita N, Wang H, Kasahara H, et al. IAA-Ala resistant3, an evolutionarily conserved target of miR167, mediates Arabidopsis root architecture changes during high osmotic stress [J]. Plant Cell, 2012, 24(9): 3590-3602.

备注/Memo

备注/Memo:
收稿日期:2013-10-12 修回日期:2014-02-02
基金项目:国家自然科学基金项目(31100484); 江苏省高校自然科学研究重大项目(13KJA220002); 国家高技术研究发展计划(2013AA102703)
第一作者:杨春霞,博士生。*通信作者:黄敏仁,教授。E-mail:mrhuang@njfu.edu.cn。
引文格式:杨春霞,胥猛,王明庥,等. 植物中miR160/miR167/miR390家族及其靶基因研究进展[J]. 南京林业大学学报:自然科学版,2014,38(3):155-159.
更新日期/Last Update: 2014-05-15