[1]宁 坤,宋 鑫,李慧玉*.柽柳 GF14基因的克隆与表达分析[J].南京林业大学学报(自然科学版),2016,40(02):033-40.[doi:10.3969/j.issn.1000-2006.2016.02.006]
 NING Kun,SONG Xin,LI Huiyu*.Cloning and expression analysis of ThGF14 gene in Tamarix hispida[J].Journal of Nanjing Forestry University(Natural Science Edition),2016,40(02):033-40.[doi:10.3969/j.issn.1000-2006.2016.02.006]
点击复制

柽柳 GF14基因的克隆与表达分析
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
40
期数:
2016年02期
页码:
033-40
栏目:
专题报道(Ⅱ)
出版日期:
2016-03-30

文章信息/Info

Title:
Cloning and expression analysis of ThGF14 gene in Tamarix hispida
文章编号:
1000-2006(2016)02-0033-08
作者:
宁 坤1宋 鑫2李慧玉1*
1.东北林业大学林木遗传育种国家重点实验室,黑龙江 哈尔滨 150040;
2.黑龙江七台河桃山湖国家 湿地公园管理处,黑龙江 七台河 154600
Author(s):
NING Kun1 SONG Xin2 LI Huiyu1*
1. State Key Laboratory of Tree Genetics and Breeding,Northeast Forestry University,Harbin 150040, China;
2. National Wetland Park Management Agency of Taoshan Lake,Qitaihe 154600, China
关键词:
柽柳 ThGF14 生物信息学分析 基因表达 非生物胁迫
Keywords:
Tamarix hispida ThGF14 bioinformatics gene expression abiotic stress
分类号:
S793.5; Q786
DOI:
10.3969/j.issn.1000-2006.2016.02.006
文献标志码:
A
摘要:
生物体中普遍存在的14-3-3蛋白(也称GF14蛋白)能够参与植物的一系列应激响应过程。笔者以柽柳(Tamarix hispida)为材料,从6个柽柳cDNA文库中分离出5条GF14 基因,依次命名为ThGF14a—ThGF14e。对5条GF14 基因进行生物信息学研究,并利用qRT-PCR技术对胁迫处理后的基因表达模式进行分析。结果显示:ThGF14 蛋白除了N和C末端的氨基酸外均含有一个高度保守的14-3-3 结构域,这些ThGF14蛋白分属于ε-like 和 non-ε 两种类型; 大多数 ThGF14基因在NaCl、PEG、4 ℃、CdCl2处理不同时间(6,24,48 和 72 h)的叶和根中能够被诱导表达(表达量>2倍),且不同基因间对非生物胁迫应答表现出差异,其中ThGF14c 基因在叶和根中不同胁迫条件下的表达水平均最高。研究表明,柽柳 ThGF14 基因能够参与植物的非生物胁迫应答响应过程。
Abstract:
The ubiquitous family of 14-3-3(also known as GF14)proteins function as regulators in a variety of stress response processes in plants. Five GF14 genes from Tamarix hispida, designated ThGF14a to ThGF14 e, were identified from an exhaustive search of six cDNA library databases. The basic bioinformatics analysis of five GF14 genes were implemented, and the expression patterns of GF14 genes were analyzed by qRT-PCR under the treatment of stresses. The results were as follows: Bioinformatics analysis showed that ThGF14 proteins contained a highly conserved 14-3-3 domain, and the amino acid sequences are highly conserved except at the N- and C-terminal regions. A phylogenetic analysis indicated that ThGF14 proteins have both ε-like and non-ε forms. The expression profiles of the five ThGF14 genes in response to NaCl, polyethylene glycol(PEG), low temperature, and CdCl2 for various treatment periods(6, 24, 48, and 72 h)in leaf and root tissues were investigated using qRT-PCR. The results showed that most of the five ThGF14 genes were induced(>2-fold)in leaf and root tissues under abiotic stress, and there were significant differences in response to stress between the various genes. Interestingly, the ThGF14c gene, which generated analogous results under stress in both tissues, was the most highly induced of expression level. Taken together, these results indicate that ThGF14 genes are integral to the abiotic stress response.

参考文献/References:

[1] Aitken A. 14-3-3 proteins on the MAP[J]. Trends In Biochemical Sciences, 1995, 20(3): 95-97.
[2] Rosenquist M, Alsterfjord M, Larsson C, et al. Data mining the Arabidopsis genome reveals fifteen 14-3-3 genes: Expression is demonstrated for two out of five novel genes[J]. Plant Physiology, 2001, 127(1): 142-149.
[3] Lu G, DeLisle A J, de Vetten N C, et al. Brain proteins in plants: an Arabidopsis homolog to neurotransmitter pathway activators is part of a DNA binding complex[J]. Proceedings of the National Academy of Sciences, 1992, 89(23): 11490-11494.
[4] Campo S, Peris-Peris C, Montesinos L, et al. Expression of the maize ZmGF14-6 gene in rice confers tolerance to drought stress while enhancing susceptibility to pathogen infection[J]. Journal of Experimental Botany, 2012, 63(2): 983-999.
[5] Zhang Z T, Zhou Y, Li Y, et al. Interactome analysis of the six cotton 14-3-3s that are preferentially expressed in fibres and involved in cell elongation[J]. Journal of Experimental Botany, 2010, 61(12): 3331-3344.
[6] Yao Y, Du Y, Jiang L, et al. Molecular analysis and expression patterns of the 14-3-3 gene family from Oryza sativa[J]. Journal of Biochemistry and Molecular Biology, 2007, 40(3): 349-357.
[7] Schoonheim P J, Sinnige M P, Casaretto J A, et al. 14-3-3 adaptor proteins are intermediates in ABA signal transduction during barley seed germination[J]. The Plant Journal, 2007, 49(2): 289-301.
[8] Gökirmak T, Paul A L, Ferl R J. Plant phosphopeptide-binding proteins as signaling mediators[J]. Current Opinion In Plant Biology, 2010, 13(5): 527-532.
[9] Wang W, Shakes D C. Molecular evolution of the 14-3-3 protein family[J]. Journal of Molecular Evolution, 1996, 43(4): 384-398.
[10] Elmayan T, Fromentin J, Riondet C, et al. Regulation of reactive oxygen species production by a 14-3-3 protein in elicited tobacco cells[J]. Plant, Cell & Environment, 2007, 30(6): 722-732.
[11] Saibo N J M, Lourenço T, Oliveira M M. Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses[J]. Annals of Botany, 2009, 103(4): 609-623.
[12] Morrison D K. The 14-3-3 proteins: integrators of diverse signaling cues that impact cell fate and cancer development[J]. Trends in Cell Biology, 2009, 19(1): 16-23.
[13] Oh C S. Characteristics of 14-3-3 proteins and their role in plant immunity[J]. The Plant Pathology Journal, 2010, 26(1): 1-7.
[14] 李慧玉,姜静,王珊,等. 一个新的柽柳类萌芽素基因ThGLP的结构及其表达分析[J].林业研究,2010,21(3):323-330. Li H Y, Jiang J, Wang S, et al. Expression analysis of ThGLP, a new germin-like protein gene, in Tamarix hispida[J]. Journal of Forestry Research, 2010, 21(3):323-330.
[15] Gao C, Wang Y, Liu G, et al. Expression profiling of salinity-alkali stress responses by large-scale expressed sequence tag analysis in Tamarix hispid[J]. Plant Molecular Biology, 2008, 66(3): 245-258.
[16] Li H, Wang Y, Jiang J, et al. Identification of genes responsive to salt stress on Tamarix hispida roots[J]. Gene, 2009, 433(1): 65-71.
[17] 王浩然,邵志龙,朱燕宇,等. ‘南林895'杨PdNAC1基因克隆及蛋白的亚细胞定位[J]. 南京林业大学学报(自然科学版),2015,39(3):50-54.Doi:10.3969/j.issn.1000-2006.2015.03.010. Wang H R, Shao Z L, Zhu Y Y,et al. Cloning and sub-cellular localization of PdNAC1 in poplar ‘Nanlin895' [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2015, 39(3):50-54.
[18] 官民晓,刘雪梅,张妍,等. 白桦 SPL8 转录因子基因的分离及转录表达分析[J].南京林业大学学报(自然科学版),2013,37(3):17-22. Doi:10.3969/j.issn.1000-2006.2013.03.004. Guan M X, Liu X M, Zhang Y, et al. Isolation and transcription expression analysis of SPL8 transcription factors gene of Betula platyphylla[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2013, 37(3):17-22.
[19] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4): 402-408.
[20] 刘妍婧,王彩玲,陆海,等.杨树14-3-3基因家族的分子进化及表达模式研究[J].北京林业大学学报,2010,32(3):1-7. Liu Y J, Wang C L, Lu H, et al. Molecular evolution and expression pattern of the Populus14-3-3 gene family [J]. Journal of Beijing Forestry University, 2010, 32(3): 1-7.
[21] Ferl R J. 14-3-3 proteins: regulation of signal-induced events[J]. Physiologia Plantarum, 2004, 120(2): 173-178.
[22] Chen F, Li Q, Sun L, et al. The rice 14-3-3 gene family and its involvement in responses to biotic and abiotic stress[J]. DNA Research, 2006, 13(2): 53-63.
[23] Schoonheim P J, Veiga H, da Costa P D, et al. A comprehensive analysis of the 14-3-3 interactome in barley leaves using a complementary proteomics and two-hybrid approach[J]. Plant Physiology, 2007, 143(2): 670-683.
[24] Sun G, Xie F, Zhang B. Transcriptome-wide identification and stress properties of the 14-3-3 gene family in cotton(Gossypium hirsutum gene family [J]. Journal of Beijing Forestry University, 2010, 32(3): 1-7.
[21] Ferl R J. 14-3-3 proteins: regulation of signal-induced events[J]. Physiologia Plantarum, 2004, 120(2): 173-178.
[22] Chen F, Li Q, Sun L, et al. The rice 14-3-3 gene family and its involvement in responses to biotic and abiotic stress[J]. DNA Research, 2006, 13(2): 53-63.
[23] Schoonheim P J, Veiga H, da Costa P D, et al. A comprehensive analysis of the 14-3-3 interactome in barley leaves using a complementary proteomics and two-hybrid approach[J]. Plant Physiology, 2007, 143(2): 670-683.
[24] Sun G, Xie F, Zhang B. Transcriptome-wide identification and stress properties of the 14-3-3 gene family in cotton([J]. Functional & Integrative Genomics, 2011, 11(4): 627-636.
[25] Yan J, He C, Wang J, et al. Overexpression of the Arabidopsis 14-3-3 protein GF14λ in cotton leads to a “stay-green” phenotype and improves stress tolerance under moderate drought conditions[J]. Plant and Cell Physiology, 2004, 45(8): 1007-1014.

相似文献/References:

[1]赵景奎,徐立安*,解荷峰,等.黄河三角洲柽柳群体遗传多样性RAPD分析[J].南京林业大学学报(自然科学版),2008,32(05):056.[doi:10.3969/j.jssn.1000-2006.2008.05.011]
 ZHAO Jing-kui,XU Li-an*,et al.RAPD analysis of population genetic diversity of Tamarix chinensis in Yellow River delta[J].Journal of Nanjing Forestry University(Natural Science Edition),2008,32(02):056.[doi:10.3969/j.jssn.1000-2006.2008.05.011]

备注/Memo

备注/Memo:
收稿日期:2015-05-04 修回日期:2015-10-19
基金项目:中央高校基本科研业务费专项资金项目(DL12CA04)
第一作者:宁坤(ningkun0602@126.com)。*通信作者:李慧玉(lihuiyu0519@aliyun.com),副教授。
引文格式:宁坤,宋鑫,李慧玉. 柽柳 GF14基因的克隆与表达分析[J]. 南京林业大学学报(自然科学版),2016,40(2):33-40.
更新日期/Last Update: 2016-04-01