[1]赵晓晴,赵 尘,张振东,等.海淤建筑废料混合轻质土的配比优化[J].南京林业大学学报(自然科学版),2017,41(05):121-127.[doi:10.3969/j.issn.1000-2006.201611016]
 ZHAO Xiaoqing,ZHAO Chen,ZHANG Zhendong,et al.Optimization of mixture proportions of sea silt-construction wastes with lightweight soil[J].Journal of Nanjing Forestry University(Natural Science Edition),2017,41(05):121-127.[doi:10.3969/j.issn.1000-2006.201611016]
点击复制

海淤建筑废料混合轻质土的配比优化
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
41
期数:
2017年05期
页码:
121-127
栏目:
研究论文
出版日期:
2017-09-30

文章信息/Info

Title:
Optimization of mixture proportions of sea silt-construction wastes with lightweight soil
文章编号:
1000-2006(2017)05-0121-07
作者:
赵晓晴12赵 尘3张振东2宗钟凌12李明东2
1.江苏省海洋资源开发研究院(连云港),江苏 连云港 222005; 2.淮海工学院土木与港海工程学院, 江苏 连云港 222005; 3.南京林业大学土木工程学院,江苏 南京 210037
Author(s):
ZHAO Xiaoqing12 ZHAO Chen3 ZHANG Zhendong2 ZONG Zhongling12 LI Mingdong2
1. Jiangsu Marine Resources Development and Research Institute, Lianyungang 222005,China; 2. School of Civil and Ocea Engineering, Huaihai Institute of Technology, Lianyungang 222005, China; 3.College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
关键词:
轻质建筑废料 海淤软土地基 配比 密度 无侧限抗压强度 水稳定性
Keywords:
Keywords:lightweight construction waste soft soil foundation of sea silt mixture ratio density unconfined compression strength water stability
分类号:
S722
DOI:
10.3969/j.issn.1000-2006.201611016
文献标志码:
A
摘要:
【目的】对海淤软土地基进行轻质化处理,制备具有轻质、高强特点的海淤建筑废料混合轻质土,可以减轻疏浚海淤地基的沉降。【方法】以疏浚海淤泥为原料土、水泥为固化剂、轻质建筑废料为轻质材料,采用优选配合比设计方法,研究组成材料对混合轻质土密度和强度的影响。同时以轻质高强、经济合理为原则,提出该混合轻质土的强度配比公式,并测试其耐久性指标水稳定性。【结果】水泥用量对混合轻质土密度影响较小,而轻质建筑废料用量对混合轻质土密度影响较大,随着轻质建筑废料用量的增加,混合轻质土密度降低; 水泥用量和轻质建筑废料用量对混合轻质土的无侧限抗压强度影响均较大,当轻质建筑废料用量不变时,随着水泥用量的增加,混合轻质土强度增加; 而当水泥用量不变时,随着轻质建筑废料用量的增加,混合轻质土的强度先增加后降低,存在一个峰值。【结论】不同的原料土、固化剂和轻质材料配比都会对轻质土的物理、力学性质产生影响,在实际工程应用中,在参考该研究提出的配比公式时,如混合轻质土的组分发生变化,还需要对其实用性进行验证。
Abstract:
【Objective】To reduce the settlement of the foundations in dredged sea silt, light treatment was adopted, through preparing sea silt-construction waste mixed lightweight soil with the characteristics of lightweight and high-strength. 【Method】The final mixture took dredged sea silt as raw soil, cement as curing agent and light construction waste as light material. The optimum mixture ratio was determined by examining the influence of the compositions of the mixture on the density and strength of the final material. Meanwhile, taking the lightweight, high-strength, and economic requirements of the final material into consideration, the ideal ratio for mixing lightweight soil to cement and the water stability of the resulting mixture were determined.【Results】The cement component had very little influence on the density of the final material. The lightweight construction waste component had a more significant effect on the density of the mixture, which decreased with increasing amounts of lightweight construction waste. Both the cement and the lightweight construction waste components influenced the unconfined compression strength of the mixture. When the amount of the lightweight construction waste component was kept constant, the strength of the mixture increased with increasing amount of cement. Conversely, the strength of the mixture increased initially with increasing amount of the lightweight construction waste and then decreased, leading to the peak strength value. 【Conclusion】Different raw soil, curing agent and lightweight materials all affected the physical and mechanical properties of the mixture. In practical engineering applications, if the composition of the mixture changed, it is necessary to verify the practical applicability of this formula.

参考文献/References:

[1] GAO Y F, WANG S M, CHEN C B. A united deformation-strength framework for Light weight sand-EPS beads soil(LSES)under cyclic loading [J]. Soil Dynamics and Earthquake Engineering, 2011, 31(8): 1144-1153. DOI:10.1016/j.soildyn.2011.04.002.
[2] HAI VIET VO, DAE-WOOK P. Lightweight treated soil as a potential sustainable pavement material [J]. Journal of Performance of Constructed Facilities, 2016, 30(1):1-7. DOI:10.1061/(ASCE)CF.1943-5509.0000720.
[3] 朱伟, 姬凤玲, 李明东,等. 轻质土密度、强度与材料组成的关系研究[J]. 岩土力学, 2007,28(7):1411-1414.DOI: 10.3969/j.issn.1000-7598.2007.07.024. ZHU W, JI F L, LI M D, et al. Relationships among density, strength and materials of lightweight treated soil [J]. Yantu Lixue/Rock and Soil Mechanics, 2007, 28(7):1411-1414.
[4] 沙玲,王国才,金菲力,等. 淤泥再生混合轻质土强度特性试验研究[J]. 南京理工大学学报,2013,37(3):441-446.DOI:10.3969/j.issn.1005-9830.2013.03.021. SHA L, WANG G C, JIN F L, et al. Experimental study on strength properties of mixed lightweight soil from recycled sludge[J]. Journal of Nanjing University of Science and Technology, 2013,37(3):441-446.
[5] 金菲力. 淤泥再生混合轻质土工程特性的试验研究[D].杭州:浙江工业大学,2012. JIN F L. Experimental study on the engineering properties of lightweight soil using recycled sludge[D]. Hangzhou:Zhejiang University of Technology, 2012.
[6] 林斌,张友谊,杨琪,等. 基于正交设计的气泡混合轻质土承载比试验研究[J]. 公路,2016,61(9):108-111. LIN B, ZHANG Y Y, YANG Q, et al. Test and research on the bearing ratio of bubble mixed light soil based on orthogonal design [J]. Highway, 2016,61(9):108-111.
[7] CHAIRAT T, PANICH V, SUKSUN H. Mix design charts for lightweight cellular cemented Bangkok clay [J]. Applied Clay Science, 2015(104): 318-323. DOI:10.1016/j.clay.2014.12.012.
[8] KIM T H, KIM T H, KANG G C. Performance evaluation of road embankment constructed using lightweight soils on an unimproved soft soil layer [J]. Engineering Geology, 2013,27(160): 34-43. DOI:10.1016/j.enggeo.2013.03.024.
[9] HOU T S. Prescription formula of foamed particles in lightweight soil [J]. Geotechnical and Geological Engineering, 2015,33(1): 153-160.DOI: 10.1007/s10706-014-9814-z.
[10] MARRADI A, PINORI U, BETTI G. The use of lightweight materials in road embankment construction original research article [J]. Procedia-Social and Behavioral Sciences, 2012(53): 1000-1009. DOI:10.1016/j.sbspro.2012.09.949.
[11] 赵晓晴,赵尘,李明东,等. 海淤建筑废料混合轻质土的需水性[J]. 南京林业大学学报(自然科学版),2013,37(3):152-156. ZHAO X Q, ZHAO C, LI M D, et al. Water requirement of sea silt construction wastes mixed lightweight soil [J]. Journal ofNanjing Forestry University(Natural Sciences Edition), 2013, 37(3):152-156. DOI:10.3969/j.jssn.1000-2006.2013.03.027.
[12] 朱平锋,计亦奇.人造轻细集料表观密度及吸水率测试方法的探讨[J]. 粉煤灰, 2004, 16(6): 42-44.DOI:10.3969/j.issn.1007-046X.2004.06.017. ZHU P F, JI Y Q. Probe into apparent density and water absorption test Method of man-made lightweight aggregates[J]. Coal Ash, 2004, 16(6): 42-44.
[13] LEE F A. The chemistry of cement and concrete [M].NewYork:Hodder Arnold,1970.
[14] 中华人民共和国行业标准.JTJ E40-2007 公路土工试验规程[S].北京:人民交通出版社,2007.
[15] 汤怡新,刘汉龙,朱伟. 水泥固化土工程特性试验研究[J]. 岩土工程学报, 2000, 22(5): 549-554.DOI:10.3321/j.issn:1000-4548.2000.05.008. TANG Y X, LIU H L, ZHU W. Study on engineering properties of cement-stabilized soil[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(5): 549-554.
[16] 刘楷,李仁民,杜延军,等. 气泡混合轻质土干湿循环和硫酸钠耐久性试验研究[J]. 岩土力学,2015,36(S1):362-366.DOI:10.16285/j.rsm.2015.S1.062. LIU K, LI R M, DU Y J, et al. A durability experimental study of lightweight soil subjected to wetting-drying cycles and sodium sulfate soaking [J]. Rock and Soil Mechanics, 2015,36(S1):362-366.
[17]章灿林,黄俭才,熊永松,等. 不同原料土掺量的气泡轻质土耐久性研究[J]. 武汉理工大学学报,2014, 36(8):32-36. DOI:10.3963/j.issn.1671-4431.2014.08.006. ZHANG C L, HUANG J C, XIONG Y S, et al. Durability of foamed cement banking with raw soil [J]. Journal of Wuhan University of Technology, 2014, 36(8):32-36.

相似文献/References:

[1]赵晓晴,赵 尘,李明东,等.海淤建筑废料混合轻质土的需水性[J].南京林业大学学报(自然科学版),2013,37(03):152.[doi:10.3969/j.issn.1000-2006.2013.03.027]
 ZHAO Xiaoqing,ZHAO Chen,LI Mingdong,et al.Water requirement of sea silt construction wastes mixed lightweight soil[J].Journal of Nanjing Forestry University(Natural Science Edition),2013,37(05):152.[doi:10.3969/j.issn.1000-2006.2013.03.027]

备注/Memo

备注/Memo:
基金项目:江苏省海洋资源开发研究院开放基金项目(KK55131111405); 连云港市科技计划项目(SH1511,CXY1514); 江苏省高校自然科学研究面上项目(15KJB560002); 淮海工学院博士流动基金项目(KQ15009); 江苏省建设科技项目(2014ZD07); 江苏省“六大人才高峰”项目(2016-JZ-066) 第一作者:赵晓晴(zxqxian@126.com),副教授,博士。
更新日期/Last Update: 1900-01-01