[1]张 虎,曹福亮*,范俊俊,等.淹水胁迫对湖北海棠生长及叶绿素荧光动力学的影响[J].南京林业大学学报(自然科学版),2018,42(01):035-40.
 ZHANG Hu,CAO Fuliang*,FAN Junjun,et al.Effects of flooding stress on the growth and chlorophyll fluorescence kinetics of Malus hupehensis[J].Journal of Nanjing Forestry University(Natural Science Edition),2018,42(01):035-40.





Effects of flooding stress on the growth and chlorophyll fluorescence kinetics of Malus hupehensis
张 虎1曹福亮2* 范俊俊2 张往祥2
1. 江苏农林职业技术学院风景园林学院,江苏 句容 212400; 2.南京林业大学林学院,江苏 南京 210037
ZHANG Hu1 CAO Fuliang2* FAN Junjun2 ZHANG Wangxiang2
1. College of Landscape Architecture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; 2. College of Forestry, Nanjing Forestry University, Nanjing 210037, China
湖北海棠 淹水胁迫 耐涝性 叶绿素荧光
Keywords:Malus hupehensis flooding stress waterlegging resistance chlorophyll fluorescence
S718; Q945
【目的】评价湖北海棠耐涝性,并从色素含量和叶绿素荧光动力学角度分析其耐涝机制。【方法】通过人工模拟淹水胁迫,对淹水胁迫过程中湖北海棠生长形态、叶片外观及叶绿素快相荧光动力学特征进行分析。【结果】①淹水处理显著抑制湖北海棠的生长,但淹水30~200 d苗木成活率仍为100%。②淹水后叶色转红,叶绿素与类胡萝卜素(Car)和花青素(Anth)的相对含量比值(mChl/mCar+Anth)显著下降。③进行叶绿素荧光动力学观测发现,处理叶片在O相的初始荧光Fo显著高于对照,在P相的最大荧光Fm显著低于对照,且淹水后在J相处的可变荧光Vj升幅(3.4%~9.0%)大于K相处的可变荧光Vk升幅(3.8%~11.6%)。随着淹水时间的延长,叶片单位面积的反应中心数目(RC/CSm)和PS Ⅱ电子受体库容量(Sm)显著降低,电子由QA向QB的传递过程受抑制,导致PSⅡ向PSⅠ的电子传递能力降低(Ψo和φRo),最终表现为综合性能参数(PItotal)受到显著抑制,而叶片的热耗散(DIo/CSm)显著递增。【结论】淹水胁迫显著抑制湖北海棠生长,但并不致死,因此可认为其具备一定的耐水淹能力。虽然淹水对湖北海棠叶片PSⅡ电子受体侧的影响大于供体侧,但叶片可通过增加热耗散比及Car和Anth相对含量比例来降低激发能的产生,以及过剩激发能的伤害,从而提高其耐水淹能力。
【Objective】The goal of this study was to evaluate waterlogging tolerance of Malus hupehensis, and analyze the waterlogging resistance in terms of pigment relative content and chlorophyll fluorescence kinetics. 【Method】The growth, morphology, leaf appearance, and chlorophyll fluorescence characteristics of M. hupehensis during flooding were analyzed by artificial simulation of flooding stress.【Result】①The growth of M. hupehensis was significantly inhibited by flooding treatment, but the survival rate of seedlings was 100% after 30 days to 200 days flooding. ②The leaves gradually turned red, and the ratio of relative content of chlorophyll to carotenoids and anthocyanin(mChl/mCar+Anth)decreased significantly after flooding. ③ The results of chlorophyll fluorescence kinetics showed that the initial fluorescence Fo(at the O phase)was significantly higher than that in the control, but the maximum fluorescence Fm(at the P phase)was significantly lower than that in the control. After the flooding, the increasing rate of the variable fluorescence Vj(3.4%-9.0%)compared with that of the control was larger than that of Vk(3.8%-11.6%). With prolongation of flooding stress, the number of reaction centers(RC/CSm)and the capacity of PSⅡ(Sm)significantly decreased, and the transfer of electrons from QA to QB was inhibited, which resulted in reducing the ability of electronic transmission from PSⅡ to PSⅠ(Ψo and φRo). Finally, as a result, the performance indexes(PItotal)significantly decreased. However, the value of DIo/CSm increased to reduce the generation of excitation energy.【Conclusion】Flooding significantly inhibited the growth of M. hupehensis, but no seedling died. Therefore, it could be considered that M. hupehensis had a certain waterlogging resistance. Although the effect on the electron acceptor of PSⅡwas greater than that of the donor, M. hupehensis could decrease the excitation energy to improve the flood resistance by increasing heat dissipation ratio, carotenoid and anthocyanin relative content.


[1] STRASSER R J, TSIMILLI-MICHAEL M, QIANG S, et al. Simultaneous in vivo recording of prompt and delayed fluorescence and 820 nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis[J]. Biochimica et Biophysica Acta, 2010, 1797(6/7): 1313-1326. DOI: 10.1016/j.bbabio.2010.03.008.
[2] GOLTOLTSEV V, ZAHARIEVA I, CHERNEV P, et al. Delayed fluorescence in photosynthesis[J]. Photosynthesis Research, 2009, 101(2/3): 217-232. DOI: 10.1007/s11120-009-9451-1.
[3] PAPAGEORGIOU E, GOVINDJEE G C. Chlorophyll a fluorescence: a signature of photosynthesis[J]. Journal of Plant Physiology, 2016, 163(6):689-690. DOI: 10.1016/j.jplph.2005.10.001.
[4] 李鹏民, 高辉远, STRASSER R J. 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用[J]. 植物生理与分子生物学学报, 2005, 31(6): 559-566. DOI: 10.3321/j.issn:1671-3877.2005.06.001. LI P M, GAO H Y, STRASSER R J. Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study[J]. Journal of Plant Physiology and Molecular Biology, 2005, 31(6):559-566.
[5] ZHOU Z Q. The apple genetic resources in China: the wild species and their distributions, informative characteristics and utilisation[J]. Genet Res Crop Evol, 1999, 46(6): 599-609. DOI: 10.1023/A:1008747709534.
[6] 屈克义, 胡汉环, 杜远义, 等. 湖北海棠叶煎液药效学实验研究[J]. 时珍国医国药, 2000, 11(2): 107-108. DOI: 10.3969/j.issn.1008-0805.2000.02.006. QU K Y, HU H H, DU Y Y, et al. Experiment study of pharmacodynamics of Malus hupehensis decoction[J]. Lishizhen Medicne and Materia Medica Research, 2000, 11(2): 107-108.
[7] ZHANG W, FAN J, TAN Q, et al. Mechanisms underlying the regulation of root formation in Malus hupehensis, stem cuttings by using exogenous hormones[J]. Journal of Plant Growth Regulation, 2017, 36(1): 174-185. DOI: 10.1007/s00344-016-9628-8.
[8] 马丽清. 珠眉海棠与山定子耐盐机理的对比研究[D]. 北京: 中国农业大学, 2002. MA L Q. Comparative studies on salt tolerance mechanisms of Malus zumi and Malus baccata[D]. Beijing: China Agricultural University, 2002.
[9] 张坤玺. 苹果砧木幼苗耐碱性综合评价及营养元素积累的差异分析[D]. 杨凌: 西北农林科技大学, 2016. ZHANG K X. Alkali-tolerance of apple rootstock seedlings and the differences in nutrient elements accumulation[D]. Yanglin: Northwest Agriculture and Forestry University, 2016.
[10] 范晓丹, 刘飞, 王衍安, 等. 不同苹果砧木对缺锌胁迫的耐性评价[J]. 应用生态学报, 2015, 26(10): 3045-3052. DOI:10.13287/j.1001-9332.20150921.002. FAN X D, LIU F, WANG Y A, et al. Evaluation of zinc deficiency tolerance in different kinds of apple rootstocks[J]. Chinese Journal of Applied Ecology, 2015, 26(10): 3045-3052.
[11] 刘春风, 谢寅峰, 张往祥. 不同品种海棠对高温胁迫的生理响应[J]. 林业工程学报, 2015, 29(4):31-36. DOI:10.13360/j.issn.1000-8101.2015.04.007. LIU C F, XIE Y F, ZHANG W X. Physiological response of different crabapple varieties to high temperature stress[J]. Journal of Forestry Engineering, 2015, 29(4): 31-36.
[12] 刘春风, 刘少轩, 谢寅峰,等. 高温胁迫对观赏海棠形态和生长的影响[J]. 林业科技开发, 2013, 27(3):42-45. DOI: 10.3969/j.issn.1000-8101.2013.03.011. LIU C F, LIU S X, XIE Y F, et al. Effects of high temperature stress on morphology and growth of crabapple varieties[J]. China Forestry Science and Technology, 2013, 27(3): 42-45.
[13] 李萍萍. 观赏海棠品种(系)的抗寒特性研究[D]. 泰安: 山东农业大学, 2012. LI P P. Study of cold-resistance cultivars(colne)in crabapple(Malus spp.)[D]. Taian: Shandong Agricultural University, 2012.
[14] 徐颖. 海棠幼苗对干旱复水和NaCl胁迫的反应及其抗性评价[D]. 泰安: 山东农业大学, 2016. XU Y. Resistance evaluation and response of crabapple seedlings under drought and rehydration and NaCl solution stress[D]. Taian: Shandong Agricultural University, 2016.
[15] ZHAO H, YANG H. Exogenous polyamines alleviate the lipid peroxidation induced by cadmium chloride stress in Malus hupehensis Rehd[J]. Scientia Horticulturae, 2008, 116(4): 442-447. DOI: 0.1016/j.scienta.2008.02.017.
[16] MERZLYAK M N, SOLOVCHENKO A E, GITELSON A A.Reflectance spectral features and non-destructive estimation of chlorophyll, carotenoid and anthocyanin content in apple fruit[J]. Postharvest Biology and Technology, 2003, 27(2): 197-211. DOI: 10.1016/S0925-5214(02)00066-2.
[17] STRASSER R J, SRIVASTAVA A, TSIMILLI-MICHAEL M. The fluorescence transient as a tool to characterize and screen photosynthetic samples[M]. London: Publishers Taylor and Francis, 2000: 445-483.
[18] 曹福亮, 蔡金峰, 汪贵斌, 等. 淹水胁迫对乌桕生长及光合作用的影响[J]. 林业科学, 2010, 46(10): 57-61. DOI: 10.11707/j.1001-7488.20101009. CAO F L, CAI J F, WANG G B, et al. Effects of waterlogging stress on the growth and photosynthesis of Sapium sebiferum[J]. Scientia Silvae Sinicae, 2010, 46(10):57-61.
[19] 聂庆娟, 史宝胜, 孟朝,等. 不同叶色红栌叶片中色素含量、酶活性及内含物差异的研究[J]. 植物研究, 2008, 28(5): 599-602. NIE Q J, SHI B S, MENG C, et al. The enzyme activities, pigment and inclusion contents in different leaves color of Cotinus coggygria ‘Royal Purple' in autumn[J]. Bulletin of Botanical Research, 2008, 28(5):599-602.
[20] 张敏, 黄利斌, 周鹏,等. 榉树秋季转色期叶色变化的生理生化[J]. 林业科学, 2015, 51(8): 44-51. DOI: 10.11707/j.1001-7488.20150806. ZHANG M, HUANG L B, ZHOU P, et al. Physiological and biochemical changes in Zelkova serrata leaves during leaf color transformation in autumn[J]. Scientia Silvae Sinicae, 2015, 51(8): 44-51.
[21] 衣宁, 赵文倩, 刘倩, 等. 油松新生叶与老叶光合功能的比较[J]. 林业科技, 2014, 39(6):10-14. DOI: 10.3969/j.issn.1001-9499.2014.06.003. YI N, ZHAO W Q, LIU Q, et al. Comparation on photosynthetic capacity of new leaves and older leaves of Pinus tabuliformis[J]. Forestry Science and Technology, 2014, 39(6): 10-14.
[22] 杨小鑫, 吕运舟, 董筱昀, 等. ‘金焰彩栾'与黄山栾树光合特性比较[J]. 南京林业大学学报(自然科学版), 2016, 40(4): 74-80. DOI: 10.3969/j.issn.1000-2006.2016.04.012. YANG X X, LV Y Z, DONG X Y, et al. Photosynthetic characteristics of Koelreuteria bipinnata var. integrifoliola and its natural yellow mutant ‘Jinyan' [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2016, 40(4):74-80.
[23] DEMMIG-ADAMS B, ADAMS W W. The role of xanthophyll cycle carotenoids in the protection of photosynthesis[J]. Trends in Plant Science, 1996, 1(1): 21-26. DOI: 10.1016/S1360-1385(96)80019-7.
[24] HUGHES N M, MORLEY C B, SMITH W K. Coordination of anthocyanin decline and photosynthetic maturation in juvenile leaves of three deciduous tree species[J]. New Phytologist, 2007, 175(4):675-685.
[25] STEYN W J, WAND S J E, HOLCROFT D M, et al. Anthocyanins in vegetative tissues: a proposed unified function in photoprotection[J]. New Phytologist, 2002, 155(3): 349-361.
[26] ZHANG L T, ZHANG Z S, GAO H Y, et al. Mitochondrial alternative oxidase pathway protects plants against photoinhibition by alleviating inhibition of the repair of photodamaged PSⅡ through preventing formation of reactive oxygen species in Rumex K-1 leaves[J]. Physiologia Plantarum, 2011, 143(4): 396-407. DOI: 10.1111/j.1399-3054.2011.01514.x
[27] 邱念伟, 周峰, 王颖, 等. 松树与杨树叶片叶绿素快相荧光动力学特征比较[J]. 林业科学, 2013, 49(3): 136-143. DOI: 10.11707/j.1001-7488.20130319. QIU N W, ZHOU F, WANG Y, et al. Comparison on characteristics of the fast chlorophyll fluorescence induction kinetics between Pinus species and Populus species[J]. Scientia Silvae Sinicae, 2013, 49(3): 136-143.
[28] 姚广, 高辉远, 王未未, 等. 铅胁迫对玉米幼苗叶片光系统功能及光合作用的影响[J]. 生态学报, 2009, 29(3): 1162-1169. DOI: 10.3321/j.issn:1000-0933.2009.03.012. YAO G, GAO H Y, WANG W W, et al. The effects of Pb-stress on functions of photosystems and photosynthetic rate in maize seedling leaves[J]. Acta Ecologica Sinica, 2009, 29(3): 1162-1169.
[29] LU C M, ZHANG J H. Heat-induced multiple effects on PSII in wheat plants[J]. Journal of Plant Physiology, 2000, 156(2): 259-265. DOI: 10.1016/S0176-1617(00)80315-6.
[30] CHEN H X, GAO H Y, AN S Z, et al. Dissipation of excess energy in mehler-peroxidase reaction in Rumex leaves during salt shock[J]. Photosynthetica, 2004, 42(1): 117-122.
[31] JIANG C D, JIANG G M, WANG X, et al. Increased photosynthetic activities and thermostability of photosystem II with leaf development of elm seedlings(Ulmus pumila)probed by the fast fluorescence rise OJIP[J]. Environmental and Experimental Botany, 2006, 58(1): 261-268. DOI: 10.1016/j.envexpbot.2005.09.007.


 SUN Haijing,WANG Shufeng,CHEN Yitai*.Response to waterlogging stress of different five Liquidambar formosana provenances[J].Journal of Nanjing Forestry University(Natural Science Edition),2012,36(01):043.[doi:10.3969/j.jssn.1000-2006.2012.03.010]
 ZHANG Xiao-ping,WANG Qin-feng,FANG Yan-ming*,et al.Effects of Different Water Stress on Photosynthetic Characters of Liriodendron chinense from Zhejiang Province[J].Journal of Nanjing Forestry University(Natural Science Edition),2007,31(01):136.[doi:10.3969/j.jssn.1000-2006.2007.03.031]


基金项目:江苏省科技厅重点研发计划(BE2016332); “十三五”国家科技支撑计划(2015BAD07B0104); 江苏省高职院校教师高级访问学者计划(2015FX026) 第一作者:张虎(315725756@qq.com),副教授。*通信作者:曹福亮(flcao126@126.com),教授,院士。
更新日期/Last Update: 2018-02-06