[1]曾 俊,孙慧珍*.超声发射特征归类识别木质部栓塞信息[J].南京林业大学学报(自然科学版),2018,42(01):089-97.[doi:10.3969/j.issn.1000-2006.201703030 ]
 ZENG Jun,SUN Huizhen*.Classification of ultrasonic acoustic emissions features on determining embolism-related signals[J].Journal of Nanjing Forestry University(Natural Science Edition),2018,42(01):089-97.[doi:10.3969/j.issn.1000-2006.201703030 ]
点击复制

超声发射特征归类识别木质部栓塞信息
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
42
期数:
2018年01期
页码:
089-97
栏目:
研究论文
出版日期:
2018-01-31

文章信息/Info

Title:
Classification of ultrasonic acoustic emissions features on determining embolism-related signals
文章编号:
1000-2006(2018)01-0089-09
作者:
曾 俊孙慧珍*
东北林业大学林学院生态研究中心,黑龙江 哈尔滨 150040
Author(s):
ZENG Jun SUN Huizhen*
Center for Ecological Research, School of Forestry, Northeast Forestry University, Harbin 150040, China
关键词:
木质部栓塞 栓塞脆弱性 超声发射 针叶树
Keywords:
Keywords:xylem embolism embolism vulnerability ultrasonic acoustic emissions(UAEs) conifer
分类号:
S718.43
DOI:
10.3969/j.issn.1000-2006.201703030
文献标志码:
A
摘要:
【目的】比较超声发射不同指标应用效果,并从复杂信号中区分木质部管道空穴化信息,为超声发射技术实时无损监测树木栓塞形成生理机制提供理论参考。【方法】采用8通道Micro-II超声发射系统实时监测兴安落叶松(Larix gmelinii)和红松(Pinus koraiensis)枝段木质部超声发射信号。对比分析两树种在-35~40、≥40~50、≥50~60、≥60 dB 4个超声幅值范围计数、能量和幅值累计信号,以及信号相对速率分布特征。以数学方法寻找各幅值范围3种指标信号采集结束点,对脱水后期可能的干扰信号进行过滤。对比信号过滤前、后的各幅值范围指标及相应总信号确定时表征木质部栓塞脆弱性的P50。【结果】①兴安落叶松和红松超声幅值为≥40~50和≥50~60 dB的计数、能量和幅值累计信号较相应的总信号分别提前0~5和10~25 h; 而超声幅值为35~40和≥60 dB的分别推迟5~35和45~60 h。②两个树种超声幅值为≥40~50和≥50~60 dB的计数、能量和幅值3种指标相对速率分布特征与相应总信号基本一致,且能量相对速率最大值是相应总信号值的2/5~3/5,明显高于35~40和≥60 dB。③兴安落叶松未过滤或过滤3种指标总信号计算的P50分别为-2.92~-2.96、-2.73~-2.74 MPa,无显著差异。红松未过滤以上3种指标总信号计算值为-3.60~-3.84 MPa,无显著差异; 而过滤后能量总信号计算值在-3.40~-3.83 MPa之间,显著高于幅值总信号。④两个树种过滤后3种指标计算的P50高于相应未过滤值。其中,≥60 dB未过滤或过滤的3种指标计算的P50与相应总信号值相差最大,而其余幅值未过滤或过滤以上指标计算值与相应总信号值差异不显著(除红松≥50~60 dB过滤幅值)。【结论】幅值特征归类区分的≥40~50和≥50~60 dB信号更适用于木质部栓塞脆弱性分析。“数学法”进行信号过滤未显著改变≥40~50和≥50~60 dB栓塞脆弱性计算结果,以及树种间的栓塞脆弱性差异。
Abstract:
【Objective】The objective of the present study was to compare the different ultrasonic acoustic emissions(UAEs)indices and signals extraction in relationship with the phenomena occurring during the dehydration of tree stems from in situ-detected UAEs to obtain a better quantification of embolism by application of non-destructive UAE techniques.【Method】The characteristics of the cumulative AEs indices(i.e., count, energy and amplitude), and the relative UAE rate distributions were analyzed at four amplitude peak ranges(35-40, ≥40-50, ≥50-60 and ≥60 dB), and all the UAEs were monitored with the Micro-II Digital AE System for Larix gmelinii and Pinus koraiensis in Northeast China. The end points of the three indices for five groups of signals were determined by the end of the maximum relative UAES rates, which mathematically corresponded to the local maximum of the third derivative of the curve of cumulative UAEs versus time, and filtered out the interference signals at late stages of dehydration. The P50 values, which are indicators of xylem embolism vulnerability, were calculated based on five groups of unfiltered and filtered data.【Result】① The cumulative curves for the indexes at ≥40-50 and ≥50-60 dB were shifted left 0-5 h in L. gmelinii and 10-25 h in P. koraiensis, whereas the curves at 35-40 and ≥ 60 dB were shifted right 5-35 h in L. gmelinii and 45-60 h in P. koraiensis as compared with those of the total signals. ② The relative UAE rate distributions at ≥40-50 and ≥50-60 dB for the two species were basically consistent with the corresponding total signals. Moreover, the maximum relative rate of energy was 2/5-3/5 of the values for the total signals, which was markedly higher than that at 35-40 dB and ≥ 60 dB. ③ In L. gmelinii, no significant differences were found in the P50 among count, energy, and amplitude, based on unfiltered or filtered total signals, which ranged from -2.92 to -2.96 MPa, and from -2.73 to -2.74 MPa, respectively. For P. koraiensis, P50 calculated from the total signals of three unfiltered indices showed no significant difference, and ranged from -3.60 to -3.84 MPa. However, values based on filtered total signals of energy were significantly higher than those of the filtered amplitude, which ranged from -3.40 to -3.83 MPa. ④ P50 were higher in the three filtered indices than in the unfiltered data for each of the two species. The values at ≥ 60 dB based on unfiltered or three filtered indices had the largest difference in the total signals. Moreover, the values for the rest of the amplitude peak ranges showed no significant difference in the total signals, with the exception of filtered amplitude at ≥50-60 dB in P. koraiensis.【Conclusion】Three different types of UAEs at ≥40-50 dB and ≥50-60 dB classified by amplitude features may be good indicators of the vulnerability of xylem embolism as compared with those at 35-40 dB and ≥ 60 dB. Signal filtration using a mathematical approach did not change the values of P50 at ≥40-50 dB and ≥50-60 dB significantly for each of the two species studied, or for the interspecific difference in embolism vulnerability.

参考文献/References:

[1] HAYHOE K, WAKE C P, HUNTINGTON T G, et al. Past and future changes in climate and hydrological indicators in the US Northeast[J]. Climate Dynamics, 2007, 28(4): 381-407. DOI:10.1007/s00382-006-0187-8.
[2] SOLOMON S, QIN D, MANNING M,et al. IPCC fourth assessment report of working group I. climate change 2007: the physical science basis[M]. Cambridge: Cambridge University Press, 2007.
[3] ALLEN C D, MACALADY A K, CHENCHOUNI H, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests[J]. Forest Ecology and Management, 2010, 259(4): 660-684. DOI:10.1016/j.foreco.2009.09.001.
[4] CHOAT B, JANSEN S, BRODRIBB T J, et al. Global convergence in the vulnerability of forests to drought[J]. Nature, 2012, 491(7426): 752-755. DOI:10.1038/nature11688.
[5] TYREE M T, SPERRY J S. Vulnerability of xylem to cavitation and embolism[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1989, 40(1): 19-38. DOI:10.1146/annurev.pp.40.060189.000315.
[6] DOMEC J C, GARTNER B L. Cavitation and water storage capacity in bole xylem segments of mature and young Douglas-fir trees[J]. Trees, 2001, 15(4): 204-214. DOI:10.1007/s004680100095.
[7] TYREE M T, DIXON M A. Cavitation events in Thuja occidentalis L.:utrasonic acoustic emissions from the sapwood can be measured[J]. Plant Physiology, 1983, 72(4): 1094-1099. DOI:10.1104/pp.72.4.1094.
[8] TYREE M T, DIXON M A, TYREE E L, et al. Ultrasonic acoustic emissions from the sapwood of cedar and hemlock: an examination of three hypotheses regarding cavitations[J]. Plant Physiology, 1984, 75(4): 988-992. DOI:10.1104/pp.75.4.988.
[9] GULLO M A, SALLEO S. Three different methods for measuring xylem cavitation and embolism: a comparison[J]. Annals of Botany, 1991, 67(5): 417-424. DOI:10.1093/oxfordjournals.aob.a088176.
[10] COCHARD H. Vulnerability of several conifers to air embolism[J]. Tree Physiology, 1992, 11(1): 73-83. DOI:10.1093/treephys/11.1.73.
[11] COCHARD H, BADEL E, HERBETTE S, et al. Methods for measuring plant vulnerability to cavitation: a critical review[J]. Journal of Experimental Botany, 2013, 64(15): 4779-4791. DOI:10.1093/jxb/ert193.
[12] TYREE M T, DIXON M A, THOMPSON R G. Ultrasonic acoustic emissions from the sapwood of Thuja occidentalis measured inside a pressure bomb[J]. Plant Physiology, 1984, 74(4): 1046-1049. DOI:10.1104/pp.74.4.1046.
[13] TYREE M T, DIXON M A. Water stress induced cavitation and embolism in some woody plants[J]. Physiologia Plantarum, 1986, 66(3): 397-405. DOI:10.1111/j.1399-3054.1986.tb05941.x.
[14] ROSNER S, KLEIN A, WIMMER R, et al. Extraction of features from ultrasound acoustic emissions: a tool to assess the hydraulic vulnerability of Norway spruce trunkwood[J]. New Phytologist, 2006, 171(1): 105-116. DOI:10.1111/j.1469-8137.2006.01736.x.
[15] MAYR S, ROSNER S. Cavitation in dehydrating xylem of Picea abies: energy properties of ultrasonic emissions reflect tracheid dimensions[J]. Tree Physiology, 2011, 31(1): 59-67. DOI:10.1093/treephys/tpq099.
[16] ROSNER S. Acoustic detection of cavitation events in water conducting elements of Norway spruce sapwood[J]. Journal of Acoustic Emission, 2004, 22(1): 110-118.
[17] ROSNER S. A new type of vulnerability curve: is there truth in vine?[J]. Tree Physiology, 2015, 35(4): 410-414. DOI:10.1093/treephys/tpu080.
[18] HACKE U, SAUTER J J. Drought-induced xylem dysfunction in petioles, branches, and roots of Populus balsamifera L. and Alnus glutinosa(L.)Gaertn[J]. Plant Physiology, 1996, 111(2): 413-417. DOI:10.1104/pp.111.2.413.
[19] HACKE U, SAUTER J J. Vulnerability of xylem to embolism in relation to leaf water potential and stomatal conductance in Fagus sylvatica f. purpurea and Populus balsamifera[J]. Journal of Experimental Botany, 1995, 46(9): 1177-1183. DOI:10.1093/jxb/46.9.1177.
[20] NOLF M, BEIKIRCHER B, ROSNER S, et al. Xylem cavitation resistance can be estimated based on time-dependent rate of acoustic emissions[J]. New Phytologist, 2015, 208(2): 625-632. DOI:10.1111/nph.13476.
[21] DE ROO L, VERGEYNST L, DE BAERDEMAEKER N, et al. Acoustic emissions to measure drought-induced cavitation in plants[J]. Applied Sciences, 2016, 6(3): 71. DOI:10.3390/app6030071.
[22] BEALL F C. Overview of the use of ultrasonic technologies in research on wood properties[J]. Wood Science and Technology, 2002, 36(3): 197-212. DOI:10.1007/s00226-002-0138-4.
[23] KAWAMOTO S, WILLIAMS R S. Acoustic emission and acousto-ultrasonic techniques for wood and wood-based composites: a review[R]. Madison, WI, USA: US Department of Agriculture, 2002.
[24] QUARLES S L. Acoustic emission associated with oak during drying[J]. Wood and Fiber Science, 1992, 24(1): 2-12.
[25] VERGEYNST L L, SAUSE M G, DE BAERDEMAEKER N J, et al. Clustering reveals cavitation-related acoustic emission signals from dehydrating branches[J]. Tree Physiology, 2016, 36(6): 786-796. DOI:10.1093/treephys/tpw023.
[26] BARNARD D M, MEINZER F C, LACHENBRUCH B, et al. Climate-related trends in sapwood biophysical properties in two conifers: avoidance of hydraulic dysfunction through coordinated adjustments in xylem efficiency, safety and capacitance[J]. Plant, Cell and Environment, 2011, 34(4): 643-654. DOI:10.1111/j.1365-3040.2010.02269.x.
[27] ROSNER S. Characteristics of acoustic emissions from dehydrating wood related to shrinkage processes[J]. Journal of Acoustic Emission, 2007, 25(1): 149-156.
[28] PAMMENTER N W, VANDER WILLIGEN C. A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation[J]. Tree Physiology, 1998, 18(8/9): 589-593. DOI:10.1093/treephys/18.8-9.589.
[29] MAHERALI H, POCKMAN W T, JACKSON R B. Adaptive variation in the vulnerability of woody plants to xylem cavitation[J]. Ecology, 2004, 85(8): 2184-2199. DOI:10.1890/02-0538.
[30] OLIVERAS I, MARTÍNEZ-VILALTA J, JIMENEZ-ORTIZ T, et al. Hydraulic properties of Pinus halepensis, Pinus pinea and Tetraclinis articulata in a dune ecosystem of Eastern Spain[J]. Plant Ecology, 2003, 169(1): 131. DOI:10.1023/A:1026223516580.
[31] MARTI'NEZ-VILALTA J, PIÑOL J. Drought-induced mortality and hydraulic architecture in pine populations of the NE Iberian Peninsula[J]. Forest Ecology and Management, 2002, 161(1): 247-256. DOI:10.1016/s0378-1127(01)00495-9.
[32] 奚如春. 油松、侧柏、元宝枫蒸腾耗水的空穴栓塞和水容调节机制[D]. 北京: 北京林业大学, 2006. XI R C. Studies on the modulation mechanisms of water consumption of xylem cavitation and embolism and water capacitance in three tree species[D]. Beijing: Beijing Forestry University, 2006.
[33] 李秧秧, 石辉, 邵明安. 黄土丘陵区乔灌木叶水分利用效率及与水力学特性关系[J]. 林业科学, 2010, 46(2): 67-73. DOI:10.11707/j.1001-7488.20100212. LI Y Y, SHI H, SHAO M A. Leaf water use efficiency and its relationship with hydraulic characteristics in eight dominant trees and shrubs in loess hilly area during vegetation succession[J]. Scientia Silvae Sinicae, 2010, 46(2): 67-73.
[34] 申卫军, 张硕新, 刘立科. 几种木本植物木质部栓塞的日变化[J]. 西北林学院学报, 1999, 14(1): 22-27. DOI:10.3969/j.issn.1001-7461.1999.01.005. SHEN W J, ZHANG S X, LIU L K. Diurnal variation of xylem embolism in some woody plants[J]. Journal of Northwest Forestry University, 1999, 14(1): 22-27.
[35] 申卫军, 张硕新, 金燕. 几种木本植物木质部栓塞的季节变化[J]. 西北林学院学报, 1999, 14(1): 28-32. DOI:10.3969/j.issn.1001-7461.1999.01.006. SHEN W J, ZHANG S X, JIN Y. Seasonal variation of xylem embolism in some woody plants[J]. Journal of Northwest Forestry University, 1999, 14(1): 28-32.
[36] 安锋, 张硕新. 7种木本植物根和小枝木质部栓塞的脆弱性[J]. 生态学报, 2005, 25(8): 1928-1933. DOI:10.3321/j.issn:1000-0933.2005.08.014. AN F, ZHANG S X. Studies of roots and shoots vulnerability to xylem embolism in seven woody plants[J]. Acta Ecologica Sinica, 2005, 25(8): 1928-1933.
[37] 成俊卿, 杨家驹, 刘鹏. 中国木材志[M]. 北京: 中国林业出版社, 1992. CHENG J Q, YANG J J, LIU P. Woods of China[M]. Beijing: China Forestry Publishing House, 1992.
[38] VERGEYNST L L, DIERICK M, BOGAERTS J A, et al. Cavitation: a blessing in disguise? new method to establish vulnerability curves and assess hydraulic capacitance of woody tissues[J]. Tree Physiology, 2015, 35(4): 400-409. DOI:10.1093/treephys/tpu056.
[39] WOLKERSTORFER S V, ROSNER S, HIETZ P. An improved method and data analysis for ultrasound acoustic emissions and xylem vulnerability in conifer wood[J]. Physiologia Plantarum, 2012, 146(2): 184-191. DOI:10.1111/j.1399-3054.2012.01605.x.
[40] YAMAMOTO H, SASSUS F, NINOMIYA M, et al. A model of anisotropic swelling and shrinking process of wood. Part 2. a simulation of shrinking wood [J]. Wood Science and Technology, 2001, 35(1): 167-181. DOI:10.1007/s002260000074.
[41] ROSNER S, KLEIN A, MÜLLER U, et al. Hydraulic and mechanical properties of young Norway spruce clones related to growth and wood structure[J]. Tree Physiology, 2007, 27(8): 1165-1178. DOI:10.1093/treephys/27.8.1165.
[42] JOHNSON D M, MEINZER F C, WOODRUFF D R, et al. Leaf xylem embolism, detected acoustically and by cryo-SEM, corresponds to decreases in leaf hydraulic conductance in four evergreen species[J]. Plant, Cell and Environment, 2009, 32(7): 828-836. DOI:10.1111/j.1365-3040.2009.01961.x.
[43] 丁小康, 张祥雪, 郝燕华, 等. 木材干燥过程中声发射信号分析[J]. 木材工业, 2012, 26(3): 40-43. DOI:10.3969/j.issn.1001-8654.2012.03.011. DING X K, ZHANG X X, HAO Y H, et al. Acoustic emission analysis during drying small thin wood samples[J]. China Wood Industry, 2012, 26(3): 40-43.
[44] 李秧秧, 石辉, 邵明安. 黄土丘陵区典型树木抵抗空穴化能力及与木质部结构的关系[J]. 北京林业大学学报, 2010, 32(3): 8-13. DOI:10.13332/j.1000-1522.2010.03.029. LI Y Y, SHI H, SHAO M A. Cavitation resistance of dominant trees and shrubs in loess hilly region and their relationship with xylem structure[J]. Journal of Beijing Forestry University, 2010, 32(3): 8-13.
[45] 李荣, 党维, 蔡靖, 等. 6个耐旱树种木质部结构与栓塞脆弱性的关系[J]. 植物生态学报, 2016, 40(3): 255-263. DOI:10.17521/cjpe.2015.0260. LI R, DANG W, CAI J, et al. Relationships between xylem structure and embolism vulnerability in six species of drought tolerance trees[J]. Chinese Journal of Plant Ecology, 2016, 40(3): 255-263.
[46] 张硕新, 申卫军, 张远迎. 六种木本植物木质部栓塞化生理生态效应的研究[J]. 生态学报, 2000, 20(5): 788-794. DOI:10.3321/j.issn:1000-0933.2000.05.013. ZHANG S X, SHEN W J, ZHANG Y Y. Ecophysiological effect of xylem embolism in six tree species[J]. Acta Ecologica Sinica, 2000, 20(5): 788-794.
[47] 左力翔, 李俊辉, 李秧秧, 等. 散孔材与环孔材树种枝干、叶水力学特性的比较研究[J]. 生态学报, 2012, 32(16): 5087-5094. DOI:10.5846/stxb201110281610. ZUO L X, LI J H, LI Y Y, et al. Comparison of hydraulic traits in branches and leaves of diffuse-and ring-porous species[J]. Acta Ecologica Sinica, 2012, 32(16): 5087-5094.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金项目(31300507); “十二五”国家科技支撑计划(2011BAD37B01) 第一作者:曾俊(zengjun@nefu.edu.cn)。*通信作者:孙慧珍(sunhz-cf@nefu.edu.cn),副教授。
更新日期/Last Update: 2018-03-30