[1]杨建飞,宁莉萍*,杨 了,等.黑壳楠生长量及木材解剖特征的径向变异[J].南京林业大学学报(自然科学版),2018,42(01):181-187.[doi:10.3969/j.issn.1000-2006.201704013 ]
 YANG Jianfei,NING Liping*,YANG Liao,et al.Variation in radial increment of Lindera megaphylla andits wood anatomical characteristics[J].Journal of Nanjing Forestry University(Natural Science Edition),2018,42(01):181-187.[doi:10.3969/j.issn.1000-2006.201704013 ]
点击复制

黑壳楠生长量及木材解剖特征的径向变异
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
42
期数:
2018年01期
页码:
181-187
栏目:
研究简报
出版日期:
2018-01-31

文章信息/Info

Title:
Variation in radial increment of Lindera megaphylla and its wood anatomical characteristics
文章编号:
1000-2006(2018)01-0181-07
作者:
杨建飞1宁莉萍12*杨 了1王天石1陈甜甜1钱钰滢1
1.四川农业大学林学院,四川 成都 611134; 2. 木材工业与家具工程高校重点实验室, 四川农业大学,四川 成都 611134
Author(s):
YANG Jianfei1 NING Liping12* YANG Liao1 WANG Tianshi1 CHEN Tiantian1 QIAN Yuying1
1.College of Forestry, Sichuan Agricultural University, Chengdu 611134, China; 2. Key Laboratory of Wood Industry and Furniture Engineering, Sichuan Agricultural University, Chengdu 611134, China
关键词:
黑壳楠 径向生长量 解剖特征 径向变异
Keywords:
Keywords:Lindera megaphylla Hemsl. radial increment anatomical character radial variation
分类号:
S718. 47; S781.1
DOI:
10.3969/j.issn.1000-2006.201704013
文献标志码:
A
摘要:
【目的】研究黑壳楠(Lindera megaphylla Hemsl.)生长量及木材解剖特征径向变异规律。【方法】以百年古树黑壳楠活立木为研究对象,通过对木芯样的测定,分析其生长量和木材解剖特征径向变异规律。【结果】黑壳楠的径向连年生长量在生长初期增长迅速,生长峰值出现在第12年; 平均生长量在第1~19年增幅较大,随后仍保持着较快的生长速度; 但生长率总体呈下降趋势,生长初期下降幅度最大,从第12年开始下降幅度变小。各解剖特征参数变异大多在30~60 a间出现较大波动。在P=0.01水平上,木纤维长度与纤维宽度、导管宽度与木射线宽度、木纤维长宽比与木射线高度呈显著正相关; 木纤维长度与管孔个数、木纤维宽度与管孔个数、木纤维壁腔比与木纤维腔径比、导管宽度与管孔个数呈显著负相关。在P=0.05水平上,生长量与木纤维壁腔比、生长量与木射线高度、木纤维长度与导管宽度、木纤维长度与导管长度、木纤维宽度与导管宽度、导管长度与导管宽度、管孔个数与木射线宽度呈显著正相关; 生长量与导管宽度、生长量与木射线宽度、导管长度与管孔个数呈显著负相关。【结论】年均气温是影响黑壳楠径向生长量的关键因子。黑壳楠木纤维、导管、木射线解剖特征参数都随树龄的变化而变化,较大的波动现象与当地突发气候变化有关。
Abstract:
【Objective】The radial variation pattern of increment and wood anatomical characters of Lindera megaphylla was studied.【Method】 A century-old Lindera megaphylla in the Sichuan Province, was treated as the main research subject. By the empirical measurement of wood core samples, variation in radial pattern of increment and wood anatomical characters of Lindera megaphylla was explored.【Result】The annual radial growth of Lindera megaphylla increased rapidly at the early growth stage and the growth peak appeared in the twelfth year. The average increment of Lindera megaphylla from the first to the nineteenth year was large. Thereafter, Lindera megaphylla still maintained a relatively fast growth rate. However, the growth rate generally declined, and the initial growth rate decreased greatly, and the growth rate decreased from twelfth years. Most variations in characteristic parameters appeared to fluctuate in a large range between the 30th and the 60th year. At the 0.01 probability level, there are significant positive correlation between wood fiber length and wood fiber width, vessel width and ray width, the ratio of wood fiber length to width and ray height. However, there was significant negative correlation between wood fiber length and pores number per square millimeter, wood fiber width and pores number per square millimeter, the ratio of fiber wall thickness to fiber lumen diameter and the ratio of fiber lumen to total diameter, vessel width and pores number per square millimeter. At the 0.05 probability level, there are significant positive correlation between growth and the ratio of wood fiber wall thickness to wood fiber lumen diameter, growth and ray height, wood fiber length and vessel width and ray width, wood fiber length and vessel length, wood fiber width and vessel width, vessel length and vessel width, pores number per square millimeter and wood ray width. However, there was significant negative correlation between growth and vessels width, growth and wood ray width, vessel length and pores number per square millimeter. 【Conclusion】The average annual temperature was a key factor affecting the radial increment of Lindera megaphylla. The parameters of wood fiber, vessel, wood ray and other anatomical characteristics varied with the age in Lindera megaphylla. The large range of fluctuation was related to local abrupt climate change.

参考文献/References:

[1] 《四川植物志》编辑委员会. 四川植物志:第1卷[M]. 成都: 四川人民出版社, 1981.
[2] 西南林学院,云南省林业厅. 云南树木图志:上[M]. 昆明: 云南科学技术出版社, 1988.
[3] 中国科学院植物研究所.中国高等植物图鉴:第1册[M]. 北京:科学出版社, 2016.
[4] 郑万钧. 中国树木志:第1卷[M]. 北京: 中国林业出版社, 1985.
[5] 中国科学院中国植物志编辑委员会.中国植物志:第31卷[M]. 北京: 科学出版社, 1982.
[6] 刘西俊. 常绿观赏树种黑壳楠的北移[J]. 林业科技通讯, 1996(12): 30. DOI:10.13456/j.cnki.lykt.1996.12.013. LIU X J. Evergreen tree Lindera megaphylla northward[J]. Forest Science and Technology, 1996(12): 30.
[7] 中国医学科学院药物研究所. 中草药有效成分的研究[M]. 北京: 人民卫生出版社, 1972.
[8] 国家医药管理局中草药情报中心站. 植物有效成分手册[M]. 北京: 人民卫生出版社, 1986: 339.
[9] 彭镇华. 中国城乡乔木[M]. 北京: 中国林业出版社, 2014.
[10] 潘彪,徐朝阳,王章荣.杂交鹅掌楸木材解剖性质及其径向变异规律[J].南京林业大学学报(自然科学版),2005,29(1):79-82. DOI:10.3969/j.jssn.1000-2006.2005.01.019. PAN B,XU Z Y,WANG Z R.Wood anatomical properties and its radial variation of Liriodendron chinense×L. tulipifera[J].Journal of Nanjing Forestry University(Natural Sciences Edition),2005,29(1):79-82.
[11] 马泽清, 刘琪璟, 王辉明, 等. 中亚热带湿地松人工林生长过程[J]. 生态学报, 2011, 31(6): 1525-1537. MA Z Q, LIU Q J, WANG H M, et al. The growth pattern of Pinus elliottii plantation in central subtropical China[J]. Acta Ecologica Sinica, 2011, 31(6): 1525-1537.
[12] 石雷, 孙庆丰, 邓疆. 人工幼龄印度黄檀木材解剖性质和结晶度的径向变异及预测模型[J]. 林业科学研究, 2009, 22(4):553-558.DOI:10.13275/j.cnki.lykxyj.2009. 04.016. SHI L, SUN Q F, DENG J. Radical variation and prediction model of wood anatomical and crystallinity of young Dalbergia sissoo plantation[J]. Forest Research, 2009, 22(4): 553-558.
[13] 王军辉, 顾万春, 夏良放,等. 桤木人工林木材性质的径向变异模式研究[J]. 河南农业大学学报, 2004, 38(4):400-404. DOI:10.16445/j.cnki.1000-2340.2004.04. 009. WANG J H,GU W C,XIA L F, et al. A study on the radial variation patterns of wood characteristics of Alnus cremastogyne in plantation forest[J]. Journal of Henan Agricultural University, 2004, 38(4): 400-404.
[14] 郭明辉. 红松人工林木材解剖特征的径向变异[J].东北林业大学学报, 2001, 29(4), 12-15. DOI:10.13759/j.cnki. dlxb.2001.04.004. GUO M H. The radial variation of anatomical characteristics of wood of Pinus koraiensis plantation forest[J]. Journal of Mortheast Forestry University, 2001, 29(4), 12-15.
[15] 陈一,罗雨雁,赵春兰.西蜀寺观园林景观空间解析——以雅安云峰寺为例[J]. 西部人居环境学刊, 2015(6): 113-116. DOI:10.13791/j.cnki.hsfwest.20150623. CHEN Y,LUO Y Y,ZHAO C L. The analysis of temple garden landscape space in western Sichuan: taking Yunfeng Temple in Ya'an City as an example[J]. Interior Design, 2015(6): 113-116.
[16] 孟宪宇.测树学[M]. 北京:中国林业出版社, 2006.
[17] 张友元, 夏玉芳, 黎磊, 等. 香椿生长轮宽度·木材气干密度·纤维长度径向变异及其相关性研究[J]. 安徽农业科学, 2009, 37(5): 1976-1978. DOI:10.13989/j.cnki.0517-6611.2009.05.122. ZHANG Y Y, XIA Y F, LI L, et al. Study on the radial variations of growth ring width, air-dried wood density and fiber length of Toona sinensis(A.Juss.)Roem. and their relativity[J]. Journal of Anhui Gricultural Sciences, 2009, 37(5): 1976-1978.
[18] 周祖洪, 陈孝, 纪程灵, 等. 桢楠径向生长量变化规律研究[J]. 湖南林业科技, 2014, 41(6): 66-69. DOI:10. 3969/j.issn.1003-5710.2014.06.017. ZHOU Z H,CHEN X,JI C L,et al. Radial growth rules of Phebe zhennan[J]. Hunan Forestry Science & Technology, 2014, 41(6): 66-69.
[19] 李瑞, 代明睿, 李凤姿. 基于灰色关联度的铁路货运量关键影响因子选取方法研究[J]. 铁道货运, 2015(11): 11-14. DOI:10.16669/j.cnki.issn.1004-2024.2015.11.03. LI R, DAI M R, LI F Z. Based on grey correlation degree of the key influence factor selection method of railway freight volume[J]. Railway Freight Transport, 2015(11): 11-14.
[20] 房伟. 1961-2010年雅安市气候变化趋势[J]. 贵州气象, 2012, 36(6): 40-42. DOI:10.3969/j.issn.1003-6598.2012. 06.012. FANG W. Trend of climate change in Ya'an during 1961-2010[J]. Journal of Guizhou Meteorology, 2012, 36(6): 40-42.
[21] 周敏, 刘志雄, 王瑶, 等. 黑壳楠对低温胁迫的生理响应及耐寒性分析[J]. 长江大学学报(自然科学版), 2012, 9(2): 18-20. DOI:10.3969/j.issn.1673-1409(S).2012.02. 007. ZHOU M,LIU Z X,WANG Y,et al. Analysis of Lindera megaphylla on physiological response and tolerance to low temperature stress[J]. Journal of Yangtze University(Natural Science Edition), 2012, 9(2): 18-20.
[22] 刘莉. 光皮树木材构造和材性变异研究[D]. 南京: 南京林业大学, 2011. LIU L. Study on the variance of wood structure and properties of Corpus wilsoniana[D]. Nanjing: Nanjing Forestry University, 2011.
[23] 潘彪,罗真付,陆步云,等.长江滩地杨木纤维形态特征及径向变异[J].林业工程学报,2010,24(3):14-17. PAN B,LUO Z F,LU B Y, et al. Fiber morphological features and the radial variation patterns of poplar grown on the riverside of Yangtze River[J].Journal of Forestry Engineering, 2010,24(3):14-17.
[24] IAMA Committee. IAWA List of microscopic features for hardwood identification[S]. IAMA Bull, 1989, 10(1): 218-332.
[25] PANSHIN A J, ZEEUW C D. The textbook of wood technology [M]. New York: McGraw-Hill, 1980.

备注/Memo

备注/Memo:
基金项目:“十二五”国家科技支撑计划(2011BAC09B05); 四川农业大学科研兴趣项目(ky2016199) 第一作者:杨建飞(305298173@qq.com)。*通信作者:宁莉萍(1374515621@qq.com),教授。
更新日期/Last Update: 2018-03-30