[1]王 蒙,李凤日.基于抚育间伐效应的长白落叶松人工林单木直径生长模型[J].南京林业大学学报(自然科学版),2018,42(03):028-36.[doi:10.3969/j.issn.1000-2006.201706038]
 WANG Meng,LI Fengri*.Modelling individual tree diameter growth for Larix olgensis based on thinning effects[J].Journal of Nanjing Forestry University(Natural Science Edition),2018,42(03):028-36.[doi:10.3969/j.issn.1000-2006.201706038]
点击复制

基于抚育间伐效应的长白落叶松人工林单木直径生长模型
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
42
期数:
2018年03期
页码:
028-36
栏目:
专题报道(Ⅰ)
出版日期:
2018-05-15

文章信息/Info

Title:
Modelling individual tree diameter growth for Larix olgensis based on thinning effects
文章编号:
1000-2006(2018)03-0028-09
作者:
王 蒙李凤日
1.东北林业大学林学院,黑龙江 哈尔滨 150040; 2.国家林业局昆明勘察设计院,云南 昆明 650216
Author(s):
WANG Meng12 LI Fengri1*
1.College of Forestry, Northeast Forestry University, Harbin 150040, China; 2. Kunming Survey & Design Institute of State Forestry Administration, Kunming 650216, China
关键词:
单木直径生长模型 线性混合效应模型 长白落叶松 间伐效应
Keywords:
Keywords:individual tree diameter growth model linear mixed-effects model Larix olgensis thinning effects
分类号:
S758
DOI:
10.3969/j.issn.1000-2006.201706038
文献标志码:
A
摘要:
【目的】分析抚育间伐对长白落叶松人工林单木胸径(D)生长的影响规律并对其进行模拟。【方法】基于黑龙江省孟家岗林场与江山娇林场10块固定样地复测数据,建立了基于抚育间伐效应的与树木距离无关的长白落叶松单木胸径5年生长量预估模型,量化了抚育间伐对林木直径生长的影响。长白落叶松单木直径生长模型为基于样地效应的单水平线性混合效应模型,根据赤池信息准则(AIC)和贝叶斯信息准则(BIC)等统计指标和似然比检验对模型进行比较和筛选,并采用独立样本数据对模型进行检验。【结果】当地位指数一定且林分年龄较小时,抚育间伐强度越大,林木直径生长量越大; 当林分年龄较大时,抚育间伐对林木直径生长影响不明显。同一林分中,林木直径生长量随林木径阶增大呈增大趋势。长白落叶松单木直径生长模型中显著自变量为:林木前期胸径的二次方(D2)、胸径的自然对数(ln D)、林分中大于对象木的所有林木断面积之和(B)、地位指数(I)、抚育间伐年龄(Ti)和间伐强度(Pi)。落叶松单木直径生长最优混合效应模型的AIC、BIC和均方根误差均小于一般线性模型。独立样本数据检验最优线性混合效应模型和一般线性模型的拟合效率分别为0.678 和0.624。【结论】基于抚育间伐效应的落叶松直径生长的最优线性混合效应模型优于一般线性模型。模型能够较好地量化抚育间伐对落叶松人工林单木直径生长的影响。
Abstract:
【Objective】The objectives of the paper were to analyze and simulate the effects of thinning on the individual tree diameter growth of Larix olgensis in plantation.【Methods】Based on the remeasured data of 10 permanent plots in Mengjiagang Forest Farm and Jiangshanjiao Forest Farm of Heilongjiang Province, a distance-independent individual tree diameter growth model based on thinning effects for Larix olgensis was developed to quantify the effects of thinning. The diameter growth model for Larix olgensis was defined as a single-level linear mixed-effects model with a random plot effect. The AIC and BIC statistics and Likelihood ratio test were used for model comparison and selection, and the models were tested by using independent sample data. 【Results】The individual tree diameter growth increased with the increasing thinning intensities for young stands under the same site index, but the thinning effects for individual tree diameter growth was not significant for stands of greater age. The individual tree growth increased with diameter classes for smaller trees. The significant independent variables of the individual tree diameter growth models were the square of diameter at breast height(DBH), the natural logarithm of DBH, the basal area of trees larger than the subject tree, site index, thinning age, and thinning intensity. The AIC and BIC statistics and root mean square error(RMSE)of the best individual tree diameter growth mixed-effects model were less than those of the general linear model for Larix olgensis. The best linear mixed-effects model and general linear model of individual tree diameter growth for Larix olgensis achieved an efficiency of 0.678 and 0.624, respectively, when tested by using independent sample data. 【Conclusion】The fitting and testing results showed that the best linear mixed-effects model was better than the general linear model for individual diameter growth for Larix olgensis. The best linear mixed-effects model can quantify the effects of thinning on the individual tree diameter growth of Larix olgensis.

参考文献/References:

[1] FOX J C, BI H Q, ADES P K. Spatial dependence and individual-tree growth models I. Characterising spatial dependence[J]. Forest Ecology and Management, 2007, 245: 10-19.
[2] FOX J C, BI H Q, ADES P K. Spatial dependence and individual-tree growth models II. Modelling spatial dependence[J]. Forest Ecology and Management, 2007, 245: 20-30.
[3] BIGING G S, DOBBERTIN M. A comparison of distance-dependent competition measures for height and basal area growth of individual conifer trees[J]. Forest Science, 1992, 38: 695-720.
[4] NACHTMANN G. A semi-distance-dependent individual tree growth model for coppice forests in Austria[J]. Austrian Journal of Forest Science, 2011, 128: 133-156.
[5] PALAHÍ M, PUKKALA T, MIINA J, et al. Individual-tree growth and mortality models for Scots pine(Pinus sylvestris L.)in north-east Spain[J]. Annals of Forest Science, 2003, 60: 1-10.
[6] CAO V. Prediction of annual diameter growth and survival for individual trees from periodic measurements[J]. Forest Science, 2000, 46: 127-131.
[7] 姜立春, 杜书立. 基于非线性混合模型的东北兴安落叶松树高和直径生长模拟[J]. 林业科学研究, 2012,25(1):11-16. JIANG L C, DU S L. Height and diameter growth modeling of dahurian larch based on nonlinear mixed model in Northeastern China[J]. Forest Research,2012, 25(1): 11-16.
[8] BOHORA S B, CAO Q V. Prediction of tree diameter growth using quantile regression and mixed-effects models[J]. Forest Ecology and Management, 2014, 319: 62-66.
[9] 芦海涛, 李凤日, 贾炜玮. 水曲柳单木生长模型的研究[J]. 森林工程, 2011,27(3):5-8. LU H T, LI F R, JIA W W. Reasearch on individual tree growth model of manchurian ash[J]. Forest Engineering, 2011, 27(3): 5-8.
[10] 邱学清, 江希钿, 黄健儿, 等. 杉木人工林竞争指数及单木生长模型的研究[J]. 福建林学院学报, 1992,12(3):309-316. QIU X Q, JIANG X D, HUANG J E, et al. Study of competitive index and individual growing model of Chinese fir plant population[J]. Journal of Fujian College of Forestry, 1992, 12(3): 309-316.
[11] 王文斗, 李凤日, 那冬晨, 等. 辽东栎单木生长模型的研究[J]. 林业科技, 2005,30(2):11-13. WANG W D, LI F R, NA D C, et al. Research on the individual tree growth model of Quercus liaotungensis[J]. Forestry Science and Technology, 2005, 30(2): 11-13.
[12] 杨波, 童书振. 杉木间伐后直径生长竞争模型的建立及应用[J]. 林业科学研究, 1993,6(2):210-215. YANG B, TONG S Z. The competitive model of diameter growth of Chinese fir(Cumminghamia lanceolata Hook)after thinning and its applications[J]. Forest Research, 1993, 6(2): 210-215.
[13] 覃阳平, 张怀清, 陈永富, 等. 改进的简单竞争指标在单木生长模型中的应用[J]. 东北林业大学学报, 2014,42(12):130-133. QIN Y P, ZHANG H Q, CHEN Y F, et al. Improved hegyi simple competition index in individual tree model[J]. Journal of Northeast Forestry University, 2014,42(12): 130-133.
[14] 李春明. 基于两层次线性混合效应模型的杉木林单木胸径生长量模型[J]. 林业科学, 2012,48(3):66-73. LI C M. Individual tree diameter increment model for Chinese fir plantaion based on two-level linear mixed effects models[J]. Scientia Silvae Sinicae, 2012, 48(3): 66-73.
[15] 雷相东, 李永慈, 向玮. 基于混合模型的单木断面积生长模型[J]. 林业科学, 2009,45(1):74-80. LEI X D, LI Y C, XIANG W. Individual basal area growth model using multi-level linear mixed model with repeated measures[J]. Scientia Silvae Sinicae, 2009, 45(1): 74-80.
[16] 李春明. 随机截距效应在模拟杉木人工林单木胸径生长量中的应用[J]. 北京林业大学学报, 2011,33(4):7-12. LI C M. Using random intercept effects in DBH increment model of individual trees for fir plantation[J]. Journal of Beijing Forestry University, 2011, 33(4): 7-12.
[17] HYNYNEN J. Predicting the growth response to thinning for Scots pine stands using individual-tree growth models[J]. Silva Fennica, 1995, 29:225-246.
[18] ANDREASSEN K, TOMTER S M. Basal area growth models for individual trees of Norway spruce, Scots pine, birch and other broadleaves in Norway[J]. Forest Ecology and Management, 2003, 180: 11-24.
[19] GALECKI A, BURZYKOWSKI T. Linear mixed-effects models using R[M]. New York: Springer Texts in Statistics Engineer, 2013
[20] AKAIKE H. A new look at the statistical model identification[J]. IEEE Transactions on Automatic Control, 1974, 19: 716-723.
[21] AKAIKE H. Factor analysis and AIC[J]. Psychometrika, 1987, 52: 317-332.
[22] DARINGTON R B. Multiple regression in psychological research and practice[J]. Psychological Bulletin, 1968, 69:161.
[23] SAWA T. Information criteria for discriminating among alternative regression models[J]. Econometrica, 1978, 46: 1273-1291.
[24] ADAME P, HYNYNEN J, CAÑELLAS I, et al. Individual-tree diameter growth model for rebollo oak(Quercus pyrenaica Willd.)coppices[J]. Forest Ecology & Management, 2008, 255: 1011-1022.
[25] CALAMA R, MONTERO G. Multilevel linear mixed model for tree diameter increment in Stone pine(Pinus pinea): a calibrating approach[J]. Silva Fennica, 2004, 39: 37-54.

备注/Memo

备注/Memo:
基金项目:国家重点研发计划(2017YFD0600402) 第一作者:王蒙(36664217@qq.com)。*通信作者:李凤日(fengrili@126.com),教授,博士。
更新日期/Last Update: 2018-06-06