[1]管惠文,董希斌*,张 甜,等.间伐强度对大兴安岭落叶松天然次生林水文性能的影响[J].南京林业大学学报(自然科学版),2018,42(06):068-76.[doi:10.3969/ j.issn.1000-2006.201712004]
 GUAN Huiwen,DONG Xibin*,ZHANG Tian,et al.Effects of thinning on hydrological properties of the natural secondary Larix gmelinii forest in the Daxing’an Mountains[J].Journal of Nanjing Forestry University(Natural Science Edition),2018,42(06):068-76.[doi:10.3969/ j.issn.1000-2006.201712004]
点击复制

间伐强度对大兴安岭落叶松天然次生林水文性能的影响
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
42
期数:
2018年06期
页码:
068-76
栏目:
研究论文
出版日期:
2018-12-15

文章信息/Info

Title:
Effects of thinning on hydrological properties of the natural secondary Larix gmelinii forest in the Daxing’an Mountains
作者:
管惠文 董希斌*张 甜曲杭峰王智勇阮加甫
(东北林业大学工程技术学院,黑龙江 哈尔滨 150040)
Author(s):
GUAN Huiwen DONG Xibin* ZHANG Tian QU Hangfeng WANG Zhiyong RUAN Jiafu
(College of Engineering and Technology, Northeast Forestry University, Harbin 150040, China)
关键词:
落叶松天然次生林 抚育间伐 土壤层 枯落物层 水文性能 灰色关联评价 大兴安岭
Keywords:
natural secondary Larix gmelinii forest tending and thinning soil layer litter layer hydrological properties grey relation evaluation the Daxing’an Mountains
分类号:
S791.22
DOI:
10.3969/ j.issn.1000-2006.201712004
文献标志码:
A
摘要:
【目的】为使大兴安岭落叶松天然次生林更好地恢复和生长,在林区内对落叶松次生林进行抚育间伐,探讨最有利于林地水土保持的间伐强度,优化次生林的经营效果。【方法】2007年3月设置实验样地,间伐强度分别为9.43%、29.00%、40.01%和67.25%,同时设置未间伐的对照样地。2008—2017年实地测量,选取土壤层和枯落物层的水文效应指标,对2017年不同样地间的差异进行描述性统计,同时运用灰色关联法,对各样地的水源涵养能力进行综合评价。【结果】2008—2017年10年间各样地水文性能发生一定的变化,在间伐后第8年各指标呈现一定的稳定性。间伐后第10年,间伐强度为40.01%的落叶松次生林土壤容重最小,土壤毛管孔隙度、总孔隙度、最大持水量均为最大; 间伐强度为67.25%的落叶松次生林土壤非毛管孔隙度最大,除土壤非毛管孔隙度外不同样地间各指标存在显著性差异(P<0.05); 间伐强度为29.00%的落叶松次生林枯落物总蓄积量、总最大持水量为最大,样地内枯落物总自然持水率均为100.52%~144.37%,总最大持水率为494.79%~673.97%; 间伐强度为40.01%落叶松次生林枯落物总有效拦蓄率、总有效拦蓄量最大。通过熵权法确定土壤和枯落物的各项指标权重,运用灰色关联综合评判林地内的水文性能,关联度按照大小排序依次为间伐强度40.01%>间伐强度29.00%>间伐强度67.25%>间伐强度9.43%>未间伐(对照)。【结论】间伐10 a后,改造效果已经比较明显。综合分析土壤层和枯落物层的水文性能,间伐强度为40.01%的落叶松天然次生林林地的水文性能为最佳,4种间伐强度下的林地水文性能均优于对照样地,说明间伐对林地水文性能的提高具有积极作用。
Abstract:
【Objective】In order to restore and grow the natural secondary Larix gmelinii forest in the Daxing’an Mountains, the forest was experimentally tended and intermittently cut to find the best way to conserve soil and water and to optimize the hydrological performance of the secondary forest. 【Method】In March 2007, experimental plots, in which the thinning intensity was 9.43%, 29.00%, 40.01% and 67.25%, and control plots were set. Field measurements were made during 2008-2017, and hydrological effects were evaluated in each soil layer and litter layer in 2017. These effects were used to describe the differences between various plots. The grey relational analysis was used to establish a comprehensive evaluation system of forest water retention performance. 【Result】 In the 8th year after thinning, the indexes showed some stability. In 2017, the soil bulk density of the plot with a thinning intensity of 40.01% was the lowest of all plot types, and the soil capillary porosity, total porosity and maximum water holding capacity were the highest. The non-capillary porosity of the plot with a thinning intensity of 67.25% was the highest, and there was a significant difference between this intensity and all others for every index except for capillary porosity(P< 0.05). The litter total volume and total maximum water holding capacity of the plot with a thinning intensity of 29.00% were the highest. The total natural water holding rate of the litter in the sample plots ranged from 100.52% to 144.37%, and the total water holding rate ranged between 494.79% and 673.97%. Litter total effective reserve rate and total effective storage capacity of the plot with a thinning intensity of 40.01% were the highest. At the same time, the water holding capacity of the litter increased logarithmically with an increase in soaking time, and the water absorption rate decreased with an increase in soaking time. The index weights of soil and litter were determined with the entropy weight method, and the hydrological perfor-mance of the forest was comprehensively evaluated with grey relational analysis. The degrees of correlation were thinning intensity 40.01%(0.85)>thinning intensity 29.00%(0.76)>thinning intensity 67.25%(0.55)>thinning intensity 9.43%(0.45)>thinning intensity(CK)(0.45). 【Conclusion】 After 10 years of thinning, the reform effect was obvious. The hydrologic performances of the soil layer and the litter layer were analyzed comprehensively, and performance was the greatest in the natural secondary forest of Larix gmelinii with a thinning intensity of 40.01%. Meanwhile, the hydrological performances of plots with four different levels of thinning intensity were all better than those of the control plots. It indicated that thinning had a positive effect, improving the hydrological performance of the woodland.

参考文献/References:


[1] 谭三清, 王湘衡, 肖维,等. 基于复杂网络的森林健康评价研究[J]. 中南林业科技大学学报, 2015,35(8):13-16. DOI: 10.14067/j.cnki.1673-923x.2015.08.003.
TAN S Q, WANG X H, XIAO W, et al. Forest health assessment based on complex network[J]. Journal of Central South University of Forestry & Technology, 2015,35(8):13-16.
[2] 王兵, 郭浩, 王燕,等. 森林生态系统健康评估研究进展[J]. 中国水土保持科学, 2007, 5(3):114-121. DOI: 10.3969/j.issn.1672-3007.2007.03.021.
WANG B, GUO H, WANG Y, et al. Review on the evaluation of forest ecosystem health[J]. Science of Soil & Water Conservation, 2007, 5(3):114-121.
[3] 邓继峰, 丁国栋, 吴斌,等. 宁夏盐池地区3种林分枯落物层和土壤水文效应[J]. 北京林业大学学报, 2014, 36(2):108-114. DOI: 10.13332/j.cnki.jbfu.2014.02.021.
DENG J F, DING G D, WU B, et al. Hydrological effects of forest litter and soil of three kinds of forest stands in Yanchi District,Ningxia of Northwestern China[J]. Journal of Beijing Forestry University, 2014, 36(2):108-114.
[4] 周志立, 张丽玮, 陈倩,等. 木兰围场3种典型林分枯落物及土壤持水能力[J]. 水土保持学报, 2015, 29(1):207-213. DOI: 10.13870/j.cnki.stbcxb.2015.01.040.
ZHOU Z L, ZHANG L W, CHEN Q, et al. Water-holding capa-city of three typical forest litter and soil in mulan-weichang[J]. Journal of Soil & Water Conservation, 2015, 29(1):207-213.
[5] 魏强, 张广忠, 凌雷,等. 甘肃兴隆山主要森林类型凋落物及土壤层的蓄水功能[J]. 南京林业大学学报(自然科学版), 2013, 37(2):78-84. DOI: 10.3969/j.jssn.1000-2006.2013.02.014.
WEI Q, ZHANG G Z, LING L, et al. Water conservation function of litter and soil layer under main forest types in Xinglong Mountain of Gansu[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2013, 37(2):78-84.
[6] 寇萌, 焦菊英, 尹秋龙,等. 黄土丘陵沟壑区主要草种枯落物的持水能力与养分潜在归还能力[J]. 生态学报, 2015, 35(5):1337-1349. DOI: 10.5846/stxb201310182523.
KOU M, JIAO J Y, YIN Q L, et al. Water holding capacity and potential nutrient return capacity of main herb species litter in the Hill-Gully Loess Plateau[J]. Acta Ecologica Sinica, 2015, 35(5):1337-1349.
[7] 牛勇, 刘洪禄, 张志强. 北京地区典型树种及非生物因子对枯落物水文效应的影响[J]. 农业工程学报, 2015, 31(8):183-189. DOI: 10.3969/j.issn.1002-6819.2015.08.027.
NIU Y, LIU H L, ZHANG Z Q. Effects of typical tree species and abiotic factors on hydrologic characters of forest litter in Beijing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(8):183-189.
[8] RIDREMONT F, CLAESSENS H. Relevance of pedotopographical indicators in the assessment of spatial distribution of soil water resources under forest stands[J]. General Methodology: Aquatic Insects, 2012, 20(3):181-188.
[9] 曲杭峰, 董希斌, 张甜,等. 大兴安岭白桦低质林补植改造后枯落物水文效应变化[J]. 东北林业大学学报, 2017, 45(8):14-19.
QU H F, DONG X B, ZHANG T, et al. Changes of replanting alterations of Betula platyphylla low quality forest on litter hydrological effect in Daxing’an Mountains[J]. Journal of Northeast Forestry University, 2017, 45(8):14-19.
[10] 赵雨虹, 范少辉, 夏晨. 亚热带4种常绿阔叶林林分枯落物储量及持水功能研究[J]. 南京林业大学学报(自然科学版), 2015,39(6):93-98. DOI: 10.3969/j.issn.1000-2006.2015.06.017.
ZHAO Y H, FAN S H, XIA C. A study on reserves and water holding function of litter in four types of evergreen broadleaved forest in subtropical zone of China[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2015,39(6):93-98.
[11] 王小明, 周本智, 钟绍柱,等. 不同降雨条件下天然次生林水文过程动态分析[J]. 南京林业大学学报(自然科学版), 2010, 34(6):57-60. DOI: 10.3969/j.issn.1000-2006.2010.06.013.
WANG X M, ZHOU B Z, ZONG S Z, et al. Dynamic analysis of hydrological processes of natural secondary forest in different rainfall conditions[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2010, 34(6):57-60.
[12] 杜志勇, 刘苑秋, 郑诗樟,等. 退化红壤区不同模式重建森林土壤水分空间变异性[J]. 水土保持学报, 2007, 21(5):101-105. DOI: 10.3321/j.issn:1009-2242.2007.05.024.
DU Z Y, LIU Y Q, ZHENG S Z, et al. Spatial variability of soil moisture in different models of rehabilitated forest in degraded red soil region[J]. Journal of Soil & Water Conservation, 2007, 21(5):101-105.
[13] MEINER M, KHLER M, SCHWENDENMANN L, et al. Partitioning of soil water among canopy trees during a soil desiccation period in a temperate mixed forest[J]. Biogeosciences, 2012, 9(8):3465-3474. DOI: 10.5194/bgd-9-5415-2012.
[14] SHI Z, XU L, WANG Y, et al. Effect of rock fragments on macropores and water effluent in a forest soil in the stony mountains of the Loess Plateau, China[J]. African Journal of Biotechnology, 2012, 11(39):9350-9361.
[15] 余新晓, 周彬, 吕锡芝,等. 基于InVEST模型的北京山区森林水源涵养功能评估[J]. 林业科学, 2012, 48(10):1-5.
YU X X, ZHOU B, LV X Z, et al. Evaluation of water conservation function in mountain forest areas of Beijing based on InVEST model[J]. Scientia Silvae Sinicae, 2012, 48(10):1-5.
[16] 贺淑霞, 李叙勇, 莫菲,等. 中国东部森林样带典型森林水源涵养功能[J]. 生态学报, 2011, 31(12):3285-3295.
HE S X, LI X Y, MO F, et al. The water conservation study of typical forest ecosystems in the forest transect of eastern China[J]. Acta Ecologica Sinica, 2011, 31(12):3285-3295.
[17] 张彪, 李文华, 谢高地,等. 森林生态系统的水源涵养功能及其计量方法[J]. 生态学杂志, 2009, 28(3):529-534.
ZHANG B, LI W H, XIE G D, et al. Water conservation function and its measurement methods of forest ecosystem[J]. Chinese Journal of Ecology, 2009, 28(3):529-534.
[18] 郭辉, 董希斌, 蒙宽宏,等. 小兴安岭低质林采伐改造后枯落物持水特性变化分析[J]. 林业科学, 2010, 46(6):146-153.
GUO H, DONG X B, MENG K H, et al. Analysis about change of water-holding characteristic of litter layer after logging reform in low-quality forest stands of Lesser Khingan Range[J]. Scientia Silvae Sinicae, 2010, 46(6):146-153.
[19] 吴金卓, 孔琳琳, 王娇娇,等. 吉林蛟河不同演替阶段针阔混交林凋落物持水特性研究[J]. 南京林业大学学报(自然科学版), 2016, 40(2):113-120. DOI: 10.3969/j.issn.1000-2006.2016.02.019.
WU J Z, KONG L L, WANG J J, et al. Hydrological characteristics of forest litters in conifer and broad-leaved mixed forests at different forest successional stages in Jiaohe,Jilin Province[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2016, 40(2):113-120.
[20] 王谦, 孙保平, 丁国栋,等. 陕西榆林樟子松人工林土壤及枯落物水文效应[J]. 西北农林科技大学学报(自然科学版), 2015, 43(8):123-132. DOI: 10.13207/j.cnki.jnwafu.2015.08.006.
WANG Q, SUN B P, DING G D, et al. Hydrological effects of soil and litters in Pinus sylvestris var. mongolica plantations in Yulin,Shaanxi[J]. Journal of Northwest A & F University(Natural Sciences Edition), 2015, 43(8):123-132.
[21] 陈百灵, 董希斌, 崔莉,等. 大兴安岭低质林生态改造后枯落物水文效应变化[J]. 东北林业大学学报, 2015, 43(6):72-77,88. DOI: 10.3969/j.issn.1000-5382.2015.06.013.
CHEN B L, DONG X B, CUI L, et al. Changes of litter hydrological capacity in low-quality forest in Daxing’an Mountains after ecological reformation[J]. Journal of Northeast Forestry University, 2015, 43(6):72-77,88.
[22] 朱玉杰, 董希斌. 大兴安岭地区落叶松用材林不同抚育间伐强度经营效果评价[J]. 林业科学, 2016, 52(12):29-38. DOI:10.11707/j.1001-7488.20161204.
ZHU Y J, DONG X B. Evaluation of the effects of different thinning intensities on larch forest in Great Xing’an Mountains[J]. Scientia Silvae Sinicae, 2016, 52(12):29-38.
[23] 卢洪健, 李金涛, 刘文杰. 西双版纳橡胶林枯落物的持水性能与截留特征[J]. 南京林业大学学报(自然科学版), 2011, 35(4):67-73. DOI: 10.3969/j.issn.1000-2006.2011.04.014.
LU H J, LI J T, LIU W J. Study on water-holding capability and interception characteristics of litter layers under rubber plantations in Xishuangbanna,southwestern China[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2011, 35(4):67-73.
[24] 毛波, 董希斌. 大兴安岭低质山杨林改造效果的综合评价[J]. 东北林业大学学报, 2016, 44(8):7-12. DOI: 10.3969/j.issn.1000-5382.2016.08.002.
MAO B, DONG X B. Comprehensive evaluation on the effect of transformation of low-quality Populus davidiana forest in Daxing’an Mountains[J]. Journal of Northeast Forestry University, 2016, 44(8):7-12.
[25] SEIDL R, RAMMER W, SCHELLER R M, et al. An individual-based process model to simulate landscape-scale forest ecosystem dynamics[J]. Ecological Modelling, 2012, 231(4):87-100.
[26] 罗扬, 佘光辉, 刘恩斌. 基于熵权重的喀斯特地区林业可持续发展评价方法[J]. 南京林业大学学报(自然科学版), 2007, 31(1):114-118. DOI: 10.3969/j.issn.1000-2006.2007.01.027.
LUO Y, SHE G H, LIU E B. An appraisal method of the forestry sustainable development based on entropy weight[J]. Journal of Nanjing Forestry University(Natural Sciences Edition),2007, 31(1):114-118.
[27] 高春泥, 程金花, 陈晓冰. 基于灰色关联法的北京山区水土保持生态安全评价[J]. 自然灾害学报, 2016, 25(2):69-77.
GAO C N, CHENG J H, CHEN X B. Application of grey correlation method in evaluation soil and water conservation ecological security in Beijing mountainous area[J]. Journal of Natural Disasters, 2016, 25(2):69-77.
[28] 李秀玲, 王晓国, 李春牛,等. 基于灰色关联分析方法评价13种野生兜兰的迁地保护适应性[J]. 植物科学学报, 2015, 33(3):326-335. 10.11913/PSJ.2095-0837.2015.30326.
LI X L, WANG X G, LI C N, et al. Adaptability evaluation of ex situ conservation of thirteen wild paphiopedilum species by gray-correlation analysis[J]. Plant Science Journal, 2015, 33(3):326-335.
[29] 王立海. 森林作业与森林环境[M]. 哈尔滨:东北林业大学出版社, 2005.

相似文献/References:

[1]邵锦锋,魏柏松.湿地松林抚育间伐与修枝技术[J].南京林业大学学报(自然科学版),2005,29(05):069.[doi:10.3969/j.jssn.1000-2006.2005.05.017]
 SHAO Jin-feng,WEI Bai-song.Techniques of Thinning and Pruning in Plantations of Pinus ellottii[J].Journal of Nanjing Forestry University(Natural Science Edition),2005,29(06):069.[doi:10.3969/j.jssn.1000-2006.2005.05.017]

备注/Memo

备注/Memo:
收稿日期:2017-12-01 修回日期:2018-06-20
基金项目:国家重点研发计划(2017YFC0504103); 中央高校基本科研业务费专项资金项目(2572017AB20)
第一作者:管惠文(861623036@qq.com),博士生。*通信作者:董希斌(xibindong@xina.com),教授。
更新日期/Last Update: 2018-11-30