[1]马迎莉,高 雨,袁婷婷,等.重金属铬胁迫对髯毛箬竹光合特性的影响[J].南京林业大学学报(自然科学版),2019,43(01):054-60.[doi:10.3969/j.issn.1000-2006.201712013]
 MA Yingli,GAO Yu,YUAN Tingting,et al.Effects of heavy metal chromium stress on the photosynthetic characteristics of Indocalamus barbatus McClure[J].Journal of Nanjing Forestry University(Natural Science Edition),2019,43(01):054-60.[doi:10.3969/j.issn.1000-2006.201712013]
点击复制

重金属铬胁迫对髯毛箬竹光合特性的影响
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
43
期数:
2019年01期
页码:
054-60
栏目:
研究论文
出版日期:
2019-01-28

文章信息/Info

Title:
Effects of heavy metal chromium stress on the photosynthetic characteristics of Indocalamus barbatus McClure
文章编号:
1000-2006(2019)01-0054-07
作者:
马迎莉高 雨袁婷婷代 丽张雨峰谢寅峰*
南京林业大学,南方现代林业协同创新中心,南京林业大学生物与环境学院,江苏 南京 210037
Author(s):
MA Yingli GAO Yu YUAN Tingting DAI Li ZHANG Yufeng XIE Yinfeng*
Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
关键词:
髯毛箬竹 铬胁迫 光合特性 叶绿素荧光
Keywords:
Indocalamus barbatus McClure chromium stress photosynthetic characteristics chlorophyll fluorescence
分类号:
Q945.78
DOI:
10.3969/j.issn.1000-2006.201712013
文献标志码:
A
摘要:
【目的】 探讨髯毛箬竹(Indocalamus barbatus McClure)光合特性对铬胁迫的响应,为铬胁迫环境下髯毛箬竹生理响应机制的研究提供依据。【方法】采用盆栽法研究不同浓度铬(含量分别为0、100、400、800 mg/kg)胁迫对其光合气体交换参数及叶绿素荧光参数的影响。【结果】随着铬浓度的增加,髯毛箬竹叶绿素相对含量、净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)均呈先上升后下降趋势,而胞间二氧化碳浓度(Ci)则呈相反趋势,说明在铬胁迫下,髯毛箬竹的光合作用具有“低促高抑”现象,且胁迫导致的Pn变化主要受非气孔因素影响。与对照相比,低浓度铬胁迫(含量100 mg/kg)均导致髯毛箬竹PSⅡ最大光化学效率(Fv/Fm)、PSⅡ潜在活性(Fv/F0)、PSⅡ有效光化学效率(Fv'/Fm')、PSⅡ实际光化学效率(ηΦPS)、电子传递速率(RETR)、光化学猝灭系数(CPQC)升高而非光化学猝灭系数(CNPQ)下降,说明低浓度铬促进光合作用与刺激叶肉细胞光化学活性和增强光能利用效率有关,而PSⅡ反应中心开放率的增加和热耗散的降低是光能利用率提高的主要原因。随着铬胁迫浓度和时间的增加,髯毛箬竹的Fv/Fm、Fv/F0、 Fv'/Fm'、ηΦPS、CPQC和RETR总体上均呈现下降趋势,而CNPQ呈上升趋势。说明高浓度长时间铬处理使髯毛箬竹光合机构受损,光化学活性降低,并产生了明显的光抑制。热耗散的增强是髯毛箬竹叶片防御高浓度铬胁迫下光破坏的重要机制。【结论】髯毛箬竹能适应一定浓度的铬胁迫环境,并对不同浓度铬胁迫产生不同的光合响应调节。
Abstract:
【Objective】 Considering the heavy metal pollution in the distribution area of Indocalamus barbatus McClure, the response of its photosynthetic characteristics to chromium(Cr)stress was evaluated. This should provide a basis for the study of physiological response mechanisms of I. barbatus under Cr stress and as a reference for ecological restoration in Cr-contaminated areas.【Method】 A pot culture experiment was used to study the effects of different Cr concentrations(0, 100, 400 and 800 mg/kg)on the photosynthetic characteristics of I. barbatus, using K2Cr2O7 as the Cr source. A Cr solution was prepared in distilled water and applied to the soil at 17:00 with two times. Plant growth was then observed regularly for two months. The relative chlorophyll content(SPAD), photosynthetic gas exchange parameters, and chlorophyll fluorescence parameters were determined using a portable SPAD-502 chlorophyll meter and the Li-6400XT portable photosynthesis system.【Result】 Plants treated with a low concentration of Cr grew normally and had green leaves. Under the high concentration treatment, the leaves showed chlorotic changes and yellowing, and some were curled or dead. SPAD, net photosynthetic rate(Pn), stomatal conductance(Gs)and transpiration rate(Tr)initially increased and then decreased with increasing Cr concentrations, whereas intercellular CO2 concentration(Ci)showed an opposite trend. Pn was promoted at low Cr concentrations and was inhibited at the high Cr concentrations; the non-stomatal limiting factor was the main reason for the change in Pn. At the low Cr concentration, fluorescence parameters for the PSⅡ maximal photochemical efficiency(Fv/Fm), PSⅡ potential activity(Fv/F0), PSⅡ effective photochemical efficiency(Fv'/Fm'), PSⅡ actual photochemical efficiency(ηΦPSⅡ), electron transmission rate(RETR), and photochemical quenching(CPQC)increased, whereas those for non-photochemical quenching(CNPQ)decreased. This suggested that the improved Pn was related to the stimulation in photochemical activity and enhanced light-utilization efficiency in mesophyll cells. The increased “open” proportion of the PSⅡ reaction center and low heat dissipation were the main reasons for the improved light utilization. As Cr concentration and exposure time increased, Fv/Fm, Fv/F0, Fv'/Fm', ηΦPSⅡ, CPQC, and RETR generally presented a downward trend, whereas CNPQ showed an opposite pattern. These results indicated that long-term treatment with high concentrations of Cr damaged the photosynthetic apparatus, decreased photochemical activity, and resulted in significant photo-inhibition. The increase in CNPQ indicated that excess excitation energy could be dissipated in the form of heat energy, thereby protecting the photosynthetic apparatus from light damage and improving the resistance of plants to high concentrations of Cr. The enhanced CNPQ caused by the high Cr concentration led to a reduction in light-energy utilization efficiency; however, this is an important defense mechanism for light destruction in leaves. The dynamic changes in fluorescence parameters under stress showed that Fv/F0 and CNPQ were sensitive to the Cr concentration, and this variation presented a relatively broad range. Therefore, these two parameters could be used as a sensitive indicator to measure Cr stress induced damage and the degree of photo-inhibition. 【Conclusion】 Low levels of Cr stress could promote photosynthesis in I. barbatus, whereas long-term exposure to high levels of Cr stress damaged the photosynthetic apparatus, decreased photochemical activity, and caused significant photo-inhibition. Enhanced heat dissipation is an important protective mechanism against the photo-destruction of I. barbatus leaves under high Cr concentrations. Indocalamus barbatus McClure can adapt to certain concentrations of Cr stress in the environment and presents different photosynthetic response adjustment to different concentrations of Cr stress. Thus, Indocalamus barbatus McClure is a suitable plant material for the ecological restoration of Cr polluted areas.

参考文献/References:

[1] 裘波音. 水稻铬胁迫耐性的遗传分析与还原型谷胱甘肽缓解铬毒害的机理研究[D]. 杭州: 浙江大学, 2012.
QIU B Y. Genetic analysis of rice Gr-tolerance and mechanism study on GSH-alleviating effect on Cr toxicity[D]. Hangzhou: Zhejiang University,2012.
[2] 张志雯, 秦素平, 陈于和, 等. 硅对铬胁迫下小麦幼苗超微结构和铬吸收积累的影响[J]. 麦类作物学报, 2015, 35(4): 548-554. DOI:10.7606/j.issn.1009-1041.2015.04.16.
ZHANG Z W, QIN S P, CHEN Y H, et al. Effect of silicon on ultrastructure, chromium absorption and accumulation of wheat seedlings under chromium stress[J]. Journal of Triticeae Crops, 2015, 35(4): 548-554.
[3] 李晶晶, 彭恩泽. 综述铬在土壤和植物中的赋存形式及迁移规律[J]. 工业安全与环保, 2005, 31(3): 31-33. DOI:10.7606/j.issn.1009-1041.2015.204.16.
LI J J, PENG E Z. Summarization on the existing form and transferring rules of chromium in soil[J]. Industrial Safety and Environmental Protection, 2005, 31(3): 31-33.
[4] 梅磊, 李玲, DAUD M K, 等. 棉花对重金属胁迫的应答反应与抗性机理研究进展[J]. 棉花学报, 2018, 30(1): 102-110. DOI: 10.11963/1002-7807.mlzsj.20171107.
MEI L, LI L, DAUD M K, et al. Advances on response and resistance to heavy metal stress in cotton[J]. Cotton Science, 2018, 30(1): 102-110.
[5] CHOUDHURY S, PANDA S K. Toxic effects, oxidative stress and ultrastructural changes in moss Taxithelium nepalense(Schwaegr.)Broth. under chromium and lead phytotoxicity[J]. Water, Air and Soil Pollution, 2005, 167(1-4):73-90. DOI:10.1007/s11270-005-8682-9.
[6] 邵云, 刘会娟, 胡永娟, 等. 土壤质地对铬胁迫下小麦灌浆期形态与旗叶光合特性的影响[J]. 麦类作物学报, 2012, 32(6): 1150-1155.DOI:10.7606/j.issn.1009-1041.2012.06.025.
SHAO Y, LIU H J, HU Y J. Effects of soil textures on morphology and photosynthetic characteristics of flag leaves of wheat during filing stage in chromium polluted soils[J]. Journal of Triticeae Crops,2012, 32(6): 1150-1155.
[7] 喻谨, 汤锋, 岳永德, 等. ICP-MS法分析10种箬竹属竹叶中矿质元素质量分数[J]. 东北林业大学学报, 2015, 43(2): 19-22,32. DOI:10.13759/j.cnki.dlxb.2015.02.002.
YU J, TANG F, YUE Y D, et al. Mineral element contents in ten species of leaves from Indocalamus by ICP-MS[J]. Journal of Northeast Forestry University, 2015, 43(2): 19-22,32.
[8] WANG T, YANG W H, XIE Y F, et al. Effects of exogenous nitric oxide on the photosynthetic characteristics of bamboo(Indocalamus barbatus McClure)seedlings under acid rain stress[J]. Plant Growth Regulation, 2017, 82(1): 69-78. DOI:10.1007/s10725-016-0239-y.
[9] 王爱云, 黄姗姗, 钟国锋, 等. 铬胁迫对3种草本植物生长及铬积累的影响[J]. 环境科学, 2012, 33(6):2018-2037.DOI:10.13227/j.hjkx.2012.06.007.
WANG A Y, HUANG S S, ZHONG G F, et al. Effect of Cr(VI)stress on growth of three herbaceous plants and their Cr uptake[J].Environment Science, 2012, 33(6): 2028-2037.
[10] BONET A, POSCHENRIEDER C, BARCELO J. Chromium Ⅲ-iron interaction in Fe-deficient and Fe-sufficient bean plants. I. Growth and nutrient content[J]. Journal of Plant Nutrition, 1991, 14(4): 403-414. DOI:10.1080/01904169109364211.
[11] 杨国远, 万凌琳, 雷学青, 等. 重金属铅、铬胁迫对斜生栅藻的生长、光合性能及抗氧化系统的影响[J]. 环境科学学报, 2014, 34(6): 1606-1614. DOI:10.13671/j.hjkxxb.2014.0221.
YANG G Y, WAN L L, LEI X Q, et al. Effects of lead and chromium on the growth, photosynthetic performance, and antioxidant activity of Scenedesmus obliquus[J]. Acta Scientiae Circumstantiae, 2014, 34(6): 1606-1614.
[12] SHANKER A K, DJANAGUIRAMAN M, SUDHAGAR R, et al. Diferential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in green gram(Vigna radiata (L.)R.Wilczek. cv CO 4)roots[J]. Plant Science, 2004, 166(4): 1035-1043. DOI: 10.1016/ j. plantsci.2003.12.015.
[13] 顾艾博. 铬、铜胁迫对2种玉簪生长及生理特性的影响[D]. 长春: 吉林农业大学, 2014.
GU A B. Effects of chromium and copper stress on growth and physiological characteristics of two kinds of Hosta[D]. Changchun: Jilin Agricultural University, 2014.
[14] 王海珍, 韩路, 徐雅丽,等. 土壤水分梯度对灰胡杨光合作用与抗逆性的影响[J]. 生态学报, 2017, 37(2): 432-442. DOI: 10.5846 / stxb201507291597.
WANG H Z, HAN L, XU Y L,et al. Effects of soil water gradient on photosynthetic characteristics and stress resistance of Populus pruinosa in the Tarim Basin, China[J]. Acta Ecologica Sinica, 2017, 37(2): 432-442.
[15] 何亚飞, 张珊珊, 孙鑫, 等. 高频度模拟酸雨胁迫条件下菲白竹的光合响应[J]. 南京林业大学学报(自然科学版), 2016, 40(4): 49-55. DOI:10.3969/j.isn.100-206. 2016. 04.008.
HE Y F, ZHANG S S, SUN X, et al. Response of photosynthetic characteristics of Pleioblastus fortunei to high frequent simulated acid rain [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2016, 40(4): 49-55.
[16] HU H, WANG L, ZHOU Q, et al. Combined effects of simulated acid rain and lanthanum chloride on chloroplast structure and functional elements in rice[J]. Environmental Science and Pollution Research, 2016, 23(9): 8902-8916. DOI:10.1007/s11356-015-5962-9.
[17] 王碧霞, 肖娟, 冯旭, 等. 铬胁迫对葎草雌雄植株光合生理特性的不同影响[J]. 草业学报, 2016, 25(7): 131-139. DOI:10.11686/cyxb2015436.
WANG B X, XIAO J, FENG X, et al. Effects of Chromium stress on physiological and ecophysiological characteristics of male and female plants of Humulus scandens[J]. Acta Prataculturae Sinica, 2016, 25(7): 131-139.
[18] PANDEY N, SHARMA C P. Chromium interference in iron nutrition and water relations of cabbage[J]. Environmental and Experimental Botany, 2003, 49(3): 195-200. DOI:10.1016/s0098-8472(02)00088-6.
[19] 陈晶, 穆燕, 陈明, 等. 盐肤木对重金属铬胁迫的生理生化反应研究[J]. 生态科学, 2017, 36(2):26-31. DOI:10.14108/j.cnki.1008-8873.2017.02.004.
CHEN J, MU Y, CHEN M, et al. Response of physiology and biochemistry of Rhus chinensis to heavy metal chromium stress [J]. Ecological Science, 2017, 36(2): 26-31.
[20] 王碧霞, 胥晓, 李霄锋. 葎草幼苗光合生理特性对铬胁迫的响应[J]. 草业学报, 2014, 23(4): 181-188. DOI:10.11686/cyxb20140422.
WANG B X, XU X, LI X F. Physiological and ecophysiological response of Humulus scandens seedlings chromium stress[J]. Acta Prataculturae Sinica, 2014, 23(4): 181-188.
[21] FARIAS M E, MARTINAZZO E G, BACARIN M A. Chlorophyll fluorescence in the evaluation of photosynthetic electron transport chain inhibitors in the pea[J]. Revista Ciencia Agronômica, 2016, 47(1): 633-643. DOI: 10.5935 /1806-6690.20160021.
[22] BJORKMAN O. High-irradiance stress in higher plants and interaction with other stress factors[J]. Progressin Photosynthesis Research, 1987, 4: 11-18. DOI: 10.1007/978-94-017-0519-6_2.
[23] SUBHASH N, WENZELl O, LICHTENTHALER H K. Changes in blue-green and chlorophyll fluorescence emission and fluorescence ratios during senescence of tobacco plants[J]. Remote Sensing of Environment, 1999, 69(3): 215-213. DOI: 10.1016/S0034-4257(99)00029-2.

备注/Memo

备注/Memo:
收稿日期:2017-12-06 修回日期:2018-04-23 基金项目:江苏高校优势学科建设工程资助项目(PAPD); 南京林业大学博士学位论文创新基金项目(2017); “十二五”国家科技支撑计划(2015BAD04B02)。 第一作者:马迎莉(yli_ma@163.com),博士生。*通信作者:谢寅峰(xxyy@njfu.edu.cn),教授,ORCID(0000-0003-3159-9514)。 引文格式:马迎莉,高雨,袁婷婷,等. 重金属铬胁迫对髯毛箬竹光合特性的影响[J]. 南京林业大学学报(自然科学版),2019,43(1):54-60.
更新日期/Last Update: 2019-01-28