[1]朱雅娟,齐 凯,庞志勇.夏季高寒沙地乌柳林的水分来源[J].南京林业大学学报(自然科学版),2019,43(01):091-97.[doi:10.3969/j.issn.1000-2006.201806036]
 ZHU Yajuan,QI Kai,PANG Zhiyong.Water source of Salix cheilophila plantation in alpine sandy land in summer[J].Journal of Nanjing Forestry University(Natural Science Edition),2019,43(01):091-97.[doi:10.3969/j.issn.1000-2006.201806036]
点击复制

夏季高寒沙地乌柳林的水分来源
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
43
期数:
2019年01期
页码:
091-97
栏目:
研究论文
出版日期:
2019-01-28

文章信息/Info

Title:
Water source of Salix cheilophila plantation in alpine sandy land in summer
文章编号:
1000-2006(2019)01-0091-07
作者:
朱雅娟1齐 凯1庞志勇2
1.中国林业科学研究院荒漠化研究所,北京 100091; 2.天津大学表层地球系统科学研究院,天津 300072
Author(s):
ZHU Yajuan1 QI Kai1 PANG Zhiyong2
1.Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091,China; 2. Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072,China
关键词:
高寒沙地 乌柳林 水分来源 稳定同位素 林龄
Keywords:
alpine sandy land Salix cheilophila plantation water source stable isotope plantation age
分类号:
S718.5
DOI:
10.3969/j.issn.1000-2006.201806036
文献标志码:
A
摘要:
【目的】共和盆地位于青藏高原的半干旱区,属于典型的高寒沙地,是青海省土地荒漠化最严重的区域之一。乌柳是当地退化草地恢复的主要树种,乌柳林的稳定性是其可持续管理的关键。研究夏季乌柳林的水分来源以分析它们在半干旱区能否维持稳定性。【方法】利用稳定氢、氧同位素技术研究了夏季4个林龄乌柳林的水分来源,比较乌柳林的木质部水分与各潜在水源的稳定氢、氧同位素值,确定7月乌柳林主要利用的水源。【结果】不同林龄乌柳林可利用不同深度的土壤水或地下水。其中,2年生乌柳林主要利用地表下25 cm的土壤水,占总水源的75.5%; 10年生乌柳林主要利用地表下25~75 cm的土壤水和地下水,占总水源的73.9%; 20年生乌柳林主要利用地表下50~75 cm的土壤水和地下水,占总水源的67.7%; 30 年生乌柳林主要利用地表下25 cm的土壤水和地下水,占总水源的69.6%。随着林龄的增加(从10 a到30 a),乌柳林对地下水的依赖性逐渐增强。【结论】乌柳林通过调整水分利用策略来适应共和盆地的半干旱气候。利用稳定的深层土壤水和地下水有助于长期维持乌柳林稳定性,建议将乌柳作为高寒沙地和其他半干旱地区退化植被恢复的主要树种推广。
Abstract:
【Objective】The Gonghe Basin is located in a semiarid zone of the Qinghai-Tibet Plateau, which is a typical alpine sandy region. It is one of the most severely desertified areas of Qinghai Province. The Salix cheilophila is mainly used in the restoration of degraded grassland in the interdune areas of the Gonghe Basin. The stability of S. cheilophila plantations is dependent on sustainable management. Our objective was to evaluate whether the long-term stability of S. cheilophila plantations could be maintained in the semiarid zone by analyzing their water sources during summer. 【Method】The water sources of different S. cheilophila plantations of different ages were studied through stable hydrogen and oxygen isotope techniques.The stable hydrogen and oxygen isotope ratios of S. cheilophila xylem water were compared with those of soil water at different depths(25, 50, 75, 100, 150, 200 cm)and ground water to determine the main water source for S. cheilophila plantations of different ages in July. 【Result】The S. cheilophila plantations of different ages mostly used different depths of soil water or ground water. At two years of age, the S. cheilophila plantations mainly used 25 cm soil water, which accounted for 75.5% of its total water source. At ten years of age, the S. cheilophila plantation mainly used 25-75 cm soil water and ground water, which accounted 73.9% to its total water source. At twenty years of age, the S. cheilophila plantation mainly used 50-75 cm soil water and ground water, which accounted 67.7% of its total water source. At thirty years of age, the S. cheilophila plantation mainly used 25 cm soil water and ground water, which accounted 69.6% to its total water source, respectively. With the increase in plantation age, the dependence of the S. cheilophila plantations on ground water increased, particularly from 10 years to 30 years of age. 【Conclusion】 The water use strategy of the S. cheilophila plantations adjusted to adapt to the semiarid climate. The long-term stability of the plantations was maintained by use of stable ground water or deep soil water in the Gonghe Basin. It is suggested that the S. cheilophila could be widely used in the restoration of degraded alpine sandy regions and other semiarid zone.

参考文献/References:

[1] 杨洪晓, 卢琦, 吴波, 等. 高寒沙区植被人工修复与种子植物物种多样性的变化[J]. 林业科学, 2004, 40(5): 45-49. DOI: 10.3321/j.issn:1001-7488.2004.05.007.
YANG H X, LU Q, WU B, et al. Changes of plant species diversity in the process of human-induced vegetation restoration in sandy lands of Qinghai-Tibet Plateau [J]. Scientia Silvae Sinica, 2004, 40(5): 45-49.
[2] 王学全, 卢琦, 杨恒华, 等. 高寒沙区沙障固沙效益与生态功能观测研究[J]. 水土保持学报, 2009, 23(3): 38-41.
WANG X Q, LU Q, YANG H H, et al. Field measurements of sand-barrier benefits and ecological functions in sandy lands of Qinghai-Tibet Plateau [J]. Journal of Water and Soil Conservation, 2009, 23(3): 38-41.
[3] 张登山, 吴汪洋, 田丽慧, 等. 青海湖沙地麦草方格沙障的蚀积效应与规格选取[J]. 地理科学, 2014, 34(5): 627-634.
ZHANG D S, WU W Y, TIAN L H, et al. Effects of erosion and deposition and dimensions selection of straw-checkerboard barriers in the desert of Qinghai Lake [J]. Scientia Geographica Sinica, 2014, 34(5): 627-634.
[4] 朱雅娟, 贾志清, 薛海霞. 高寒沙地2种锦鸡儿的根系分布[J]. 西北林学院学报, 2016, 31(2): 120-125. DOI:10.3969/j.issn.1001-7461.2016.02.21.
ZHU Y J, JIA Z Q, XUE H X. Root distribution of two species of Caragana in alpine sandy land [J]. Journal of Northwest Forestry University, 2016, 31(2): 120-125.
[5] 唐忠民, 陈昕, 刘承义, 等. 洮河柳扦插育苗技术及育成苗在甘南高寒沙地的适应性[J]. 草业与畜牧, 2011, 32(6): 29-30.
TANG Z M, CHEN X, LIU C Y, et al. The cuttage of Salix taoensis and the adaptation of its seedlings in alpine sandy land of Gannan [J]. Prataculture and Graziery, 2011, 32(6): 29-30.
[6] 舒向阳, 胡玉福, 何佳, 等. 川西北高寒沙地不同大小高山柳对土壤氮素的影响[J]. 草业学报, 2017, 26(7): 55-61. DOI: 10.11686/ cyxb2016343.
SHU X Y, HU Y F, HE J, et al. Effects of Salix cupularis shrubs on soil nitrogen in the alpine sandy land of Northwest Sichuan [J]. Acta Prataculturae Sinica, 2017, 26(7): 55-61.
[7] 李晓英, 姚正毅, 王宏伟, 等. 若尔盖盆地沙漠化驱动机制[J]. 中国沙漠, 2015, 35(1): 51-59. DOI:10.7522/j.jssn.1000-694X.2014.00148.
LI X Y, YAO Z Y, WANG H W, et al. The driving mechanism of sandy desertification in the Zoige Basin of China [J]. Journal of Desert Research, 2015, 35(1): 51-59.
[8] 田丽慧, 张宏巍, 吴汪洋, 等. 高寒沙区乌柳高杆深栽固沙技术[J]. 林业实用技术, 2014(6): 26-28.
TIAN L H, ZHANG H W, WU W Y, et al. The sand-biding technology of high stem and deep planting of black willow in alpine sandy land [J]. Practical Forestry Technology, 2014(6): 26-28.
[9] 林光辉. 稳定同位素生态学[M]. 北京: 高等教育出版社, 2013.
LIN G H. Stable isotope ecology[M]. Beijing: Higher Education Press, 2013.
[10] 周海, 赵文智. 河西走廊典型荒漠区土壤水分对降水脉动响应的稳定同位素分析[J]. 中国沙漠, 2016, 36(6): 1637-1645. DOI: 10.7522/j.issn.1000-694X.2016.00055.
ZHOU H, ZHAO W Z. Response of soil moisture to precipitation pulse by stable isotope in desert area of the Hexi Corridor [J]. Journal of Desert Research, 2016, 36(6): 1637-1645.
[11] 刘玉虹, 范宁江, 杨海波, 等. 高山径流的时空变化及不同水源的贡献率[J]. 南京林业大学学报(自然科学版), 2007, 31(2): 23-26.DOI:10.3969/j.issn.1000-2006.2007.02.006.
LIU Y H, FAN N J, YANG H B, et al. Spatial and temporal variation of runoff and contributions of different water source in the alpine valley [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2007, 31(2): 23-26.
[12] CHENG X, AN S, LI B, et al. Summer rain pulse size and rainwater uptake by three dominant desert plants in a desertified grassland ecosystem in northwestern China [J]. Plant Ecology, 2006, 184: 1-12. DOI: 10.1007/s11258-005-9047-6.
[13] YANG H, AUERSWALD K, BAI Y, et al. Complementarity in water sources among dominant species in typical steppe ecosystems of Inner Mongolia, China [J]. Plant and Soil, 2011, 340(1/2): 303-313. DOI: 10.1007/s11104-010-0307-4.
[14] OHTE N, KOBA K, YOSHIKAWA K, et al. Water utilization of natural and planted trees in the semiarid desert of Inner Mongolia, China [J]. Ecological Applications, 2003, 13(2): 337-351.
[15] 李亚飞, 于静洁, 陆凯, 等. 额济纳三角洲胡杨和多枝柽柳水分来源解析[J]. 植物生态学报, 2017, 41(5): 519-528. DOI: 10.17521/ cjpe.2016.0381.
LI Y F, YU J J, LU K, et al. Water sources of Populus euphratica and Tamarix ramosissima in Ejina Delta, the lower reaches of the Heihe River, China [J]. Chinese Journal of Plant Ecology, 2017, 41(5): 519-528.
[16] 王勇, 赵成义, 王丹丹, 等. 塔里木河流域不同林龄胡杨与柽柳的水分利用策略研究[J]. 水土保持学报, 2017, 31(6): 157-163. DOI: 10.13870/j.cnki.stbcxb.2017.06.026.
WANG Y, ZHAO C Y, WANG D D, et al. Water use strategies of Populus euphratica and Tamarix ramosissima at different ages in Tarim River Basin [J]. Journal of Soil and Water Conservation, 2017, 31(6): 157-163.
[17] SU H, LI Y, LIU W, et al. Changes in water use with growth in Ulmus pumila in semiarid sandy land of northern China [J]. Trees, 2014, 28: 41-52. DOI: 10.1007/s00468-013-0928-3.
[18] 菅晶, 贾德彬, 郭少峰, 等. 2014年浑善达克沙地黄柳生长季水分来源同位素示踪研究[J]. 干旱区研究, 2017, 34(2): 350-355. DOI: 10.13866/j.azr.2017.02.15.
JIAN J, JIA D B, GUO S F, et al. Water sources in growing season of Salix gordejevii in the Otindag Sandy Land traced by stable D isotopic in 2014 [J]. Arid Land Research, 2017, 34(2): 350-355.
[19] WEI Y, FANG J, LIU S, et al. Stable isotope observation of water use sources of Pinus sylvestris var. mongolica in Horqin Sandy Land, China [J]. Trees, 2013, 27(5): 1249-1260. DOI: 10.1007/s00468-013-0873-1.
[20] SONG L, ZHU J, LI M, et al. Water utilization of Pinus sylvestris var. mongolica in a sparse wood grassland in the semiarid sandy region of Northeast China [J]. Trees, 2014, 28: 971-982. DOI: 10.1007/s00468- 014-1010-5
[21] 刘丽颖, 贾志清, 朱雅娟, 等. 青海共和盆地不同林龄乌柳林的水分利用策略[J]. 林业科学研究, 2012, 25(5): 597-603. DOI:10.3969/j.issn.1001-1498.2012.05.009.
LIU L Y, JIA Z Q, ZHU Y J, et al. Water use strategy of Salix cheilophila stands with different ages in Gonghe Basin, Qinghai Province [J]. Forest Research, 2012, 25(5): 597-603.
[22] ZHU Y J, WANG G J, LI R Q. Seasonal dynamics of water use strategy of two Salix shrubs in alpine sandy land, Tibetan Plateau [J]. PLoS ONE, 2016, 11(5): e0156586. DOI:10.1371/journal.pone.0156586.
[23] 刘尚武. 青海植物志:第1卷[M]. 西宁: 青海人民出版社, 1997:117-118.
LIU S W. Flora Qinghaiica(I)[M]. Xining: Qinghai People’s Publishing House, 1997:117-118.
[24] 于洋, 贾志清, 朱雅娟, 等. 高寒沙地乌柳(Salix cheilophila)林根系分布特征[J]. 中国沙漠, 2014, 34(1): 67-74. DOI: 10.7522/j.issn.1000-694X.2013.00188.
YU Y, JIA Z Q, ZHU Y J, et al. Root distribution of Salix cheilophila along a chronosequence of high-cold sandland [J]. Journal of Desert Research, 2014, 34(1): 67-74.
[25] PHILLIPS D L, GREGG J W. Source partitioning using stable isotopes: coping with too many sources [J]. Oecologia, 2003, 136(2): 261-269. DOI: 10.1007/s00442-003-1218-3.
[26] 朱雅娟, 薛海霞. 共和盆地两种柳树的根系分布差异[J]. 干旱区资源与环境, 2016, 30(8): 172-176. DOI: 10.13448/j. cnki. Jalre.2016.267.
ZHU Y J, XUE H X. Root distribution difference of two Salix shrubs in Gonghe Basin [J]. Journal of Arid Land Resources and Environment, 2016, 30(8): 172-176.
[27] JIA Z Q, ZHU Y J, LIU L. Different water use strategies of juvenile and adult Caragana intermedia plantations in the Gonghe Basin, Tibet Plateau [J]. PLoS ONE, 2012, 7(9): e45902. DOI:10.1371/journal.pone.0045902.
[28] LI S G, ROMERO-SALTOS H, TSUJIMURA M, et al. Plant water sources in the cold semiarid ecosystem of the upper Kherlen River catchment in Mongolia: a stable isotope approach [J]. Journal of Hydrology, 2007, 333(1): 109-117. DOI: 10.1016/j.jhydrol.2006.07.020.
[29] 郑肖然, 赵国琴, 李小雁, 等. 氢同位素在内蒙古小叶锦鸡儿灌丛水分来源研究中的应用[J]. 植物生态学报, 2015, 39(2): 184-196. DOI: 10.17521/cjpe.2015.0018.
ZHENG X R, ZHAO G Q, LI X Y, et al. Application of stable hydrogen isotope in study of water sources for Caragana microphylla bushland in Nei Mongol [J]. Chinese Journal of Plant Ecology, 2015, 39(2): 184-196.
[30] 刘保清, 刘志民, 钱建强, 等. 科尔沁沙地南缘主要固沙植物旱季水分来源[J]. 应用生态学报, 2017, 28(7): 2093-2101. DOI: 10.13287/j.1001-9332.201707.030.
LIU B Q, LIU Z M, QIAN J Q, et al. Water sources of dominant sand-binding plants in dry season in southern Horqin Sandy Land, China [J]. Journal of Applied Ecology, 2017, 28(7): 2093-2101.
[31] IPCC. Climate change 2013: the physical science basis[M]. New York: Cambridge University Press, 2013.

备注/Memo

备注/Memo:
收稿日期:2018-06-28 修回日期:2018-10-30基金项目:国家自然科学基金项目(41301095); 中国林业科学研究院荒漠化研究所课题结余经费新立项目(IDS2017JY-3)。 第一作者:朱雅娟(zhuyj@caf.ac.cn),副研究员,ORCID(0000-0001-8211-4535)。引文格式:朱雅娟,齐凯,庞志勇. 夏季高寒沙地乌柳林的水分来源[J]. 南京林业大学学报(自然科学版),2019,43(1):91-97.
更新日期/Last Update: 2019-01-28