[1]吴丽丽,王德炉*,李自玉.土壤水分对贵州小叶苦丁茶产量及品质的影响[J].南京林业大学学报(自然科学版),2019,43(01):111-117.
 WU Lili,WANG Delu*,LI Ziyu.Effect of soil moisture on yield and quality of Guizhou small-leaved Kuding tea(Ligustrum robustum)[J].Journal of Nanjing Forestry University(Natural Science Edition),2019,43(01):111-117.
点击复制

土壤水分对贵州小叶苦丁茶产量及品质的影响
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
43
期数:
2019年01期
页码:
111-117
栏目:
研究论文
出版日期:
2019-01-28

文章信息/Info

Title:
Effect of soil moisture on yield and quality of Guizhou small-leaved Kuding tea(Ligustrum robustum)
文章编号:
1000-2006(2019)01-0111-07
作者:
吴丽丽12王德炉1*李自玉1
1.贵州大学林学院,贵州 贵阳 550025; 2. 贵州省毕节市七星关区林业局,贵州 毕节 551700
Author(s):
WU Lili12 WANG Delu1* LI Ziyu1
1. College of Forestry, Guizhou University, Guiyang 550025, China; 2. Qixingguan Dicstrict Forestry Bureau of Bijie City, Guizhou Province, Bijie 551700, China
关键词:
粗壮女贞 贵州小叶苦丁茶 茶产量 茶品质 土壤水分
Keywords:
Ligustrum robustum (Rxob.)Blume Guizhou small-leaved Kuding tea yield of tea quality of tea soil moisture
分类号:
S718
文献标志码:
A
摘要:
【目的】贵州小叶苦丁茶具有较高的经济价值,探究其产量以及品质对不同土壤水分的响应特征,找出适宜贵州小叶苦丁茶植株(粗壮女贞)生长的土壤水分范围,为丰富贵州小叶苦丁茶的优质丰产体系提供参考。【方法】以3年生贵州小叶苦丁茶植株(粗壮女贞)实生苗为试验材料,采用盆栽控水的方法,设置6个土壤水分梯度,研究不同土壤含水量对贵州小叶苦丁茶叶片形态及叶片中主要化学成分的影响。【结果】①叶片指标包括叶片数、单叶面积、叶长与叶宽,茶产量指标包括单株发芽数、芽质量、一叶两芽质量、一叶四芽质量均在土壤相对含水率为85%时达到最高,各指标在70%~100%的含水率处理间并无差异。②植株死亡率随着土壤含水率降低而升高。③可溶性糖、水浸出物、茶多酚、游离氨基酸、总黄酮、茶皂素含量随着土壤相对含水率减小均呈先升高后降低趋势,土壤相对含水率≤55%时,可溶性糖、茶多酚、游离氨基酸、总黄酮、茶皂素含量均降低。【结论】适宜贵州小叶苦丁茶植株(粗壮女贞)栽培且获得最佳产量和品质的土壤相对含水率范围为70%~85%。
Abstract:
【Objective】 Guizhou small-leaved Kuding tea(Ligustrum robustum)originates from the fresh leaves of Ligustrum robustum(Rxob.)Blume, which has been one of the major substitute tea drinks in our country. At present, the development of Guizhou small-leaved Kuding tea as a health beverage has been very extensive. Therefore, Guizhou small-leaved Kuding tea is recognized as being of high economical value and developmental prospect. Soil moisture is the main source of plant physiological and ecological water supply. Soil moisture content and change have a direct impact on plant growth, development and yield. Therefore, the appropriate range of soil moisture is of great significance to the improvement of yield and quality of Guizhou small-leaved Kuding tea. The purpose of this research was to determine yield and quality corresponding to different soil moisture levels and the soil moisture range that is optimal for the yield and growth of Guizhou small-leaved Kuding tea. 【Method】 Three-year-old L. robustum seedlings were grown as experimental material using the potted water control method. The experimental seedlings were subjected to six water gradients for an experimental period of 90 days. At the end of treatment, the light green leaf buds of L. robustum were selected for quality indicator determination(i.e., soluble sugar, flavonoids, tea polyphenols, free amino acids, water extracts and tea saponin). The bud leaf was selected for yield indicator determination(i.e., leaf area, length and width). Leaf area per plant was determined with the scanning method. Yield indicators measurements followed the method of graded picking to explore the effects of different soil moisture content on leaf morphology and the main chemical components of Guizhou small-leaved Kuding tea. 【Result】① Leaf indexes(i.e., leaf number, single leaf area, leaf length and leaf width)and tea production indexes(i.e., germination number per plant, bud weight, weight of 1 leaf with 2 buds, and weight of 1 leaf with 4 buds)were the highest when the relative soil moisture content was 85%, whereas no significant differences were observed among indexes in the 70%-100% soil moisture content treatment range. Mortality rates increased with decreasing moisture content. Concentrations of soluble sugars, water extract, tea polyphenols, free amino acids, total flavonoids and tea saponin all increased at first and then decreased with decreasing relative soil moisture content. Concentrations of soluble sugars, tea polyphenols, free amino acids, total flavonoids, and tea saponin all decreased when the relative moisture content of the soil was less than 55%. 【Conclusion】 When the relative water content of the soil remained stable in the range of 70%-85%, the contents of amino acids, tea polyphenols, soluble sugars, flavonoids, and tea saponin, which reflect the quality of Guizhou small-leaved Kuding tea, increased significantly, and the yield and germination ability followed the same trend. However, the plants of Guizhou small-leaved Kuding tea suffered water stress(when relative water content of soil was low)at 40%, and the physiological functions of leaves were seriously inhibited. This led to a decrease in the quality and yield of Guizhou small-leaved Kuding tea, which was not conducive to its growth. The above shows that in the production practice, it is of great significance to keep the soil moisture in a suitable range through rational irrigation and water supply to obtain high yield and quality of Guizhou small-leaved Kuding tea. Therefore, to obtain the best yield and quality, and considering effective use of water, 70%-85% relative soil water content, i.e., 28.4%-34.5% soil water content should be used as the water supply range for cultivation of Guizhou small-leaved Kuding tea.

参考文献/References:

[1] 刘韶, 秦勇, 杜方麓. 苦丁茶化学成分研究[J]. 中国中药杂志, 2003,28(9):44-46.
LIU S, QIN Y, DU F L. Studies on chemical in leafs of Ilex Kudingcha[J]. China Journal of Chinese Materia Medica, 2003,28(9):44-46.
[2] 叶倩, 左浩江, 廖虹瑜, 等. 粗壮女贞提取物的体外抑菌作用研究[J]. 现代预防医学, 2013, 40(7):1320-1322.
YE Q, ZUO H J, LIAO H Y, et al. Study on in vitro antimicrobial activity of L. purpurascens Y. C. Yang[J]. Modern prevebtive medicine. 2013, 40(7):1320-1322.
[3] FAN Y, ZHAO X L, YONG P, et al. Genus Ilex L.phytochemistry, ethnopharmacology, and pharmacology[J]. Chinese Herbal Medicines, 2016, 8(3):209-230. DOI:10.1016/s1674-6384(16)60044-8.
[4] 黄宇声, 刘冠萍, 张栩颜, 等. 粗壮女贞水提取物对急性高脂血症小鼠血脂的干预作用[J]. 亚太传统医药, 2012, 8(6):13-14.
HUANG Y S, LIU G P, ZHANG X Y,et al. Intervention effect of Ligustrum robustum water extract on blood lipid in acute hyperlipidemia mice Asia-pacific[J] Traditional Medicine, 2012, 8(6):13-14.
[5] SUR P, CHAUDHURI T, VEDASIROMONI J R, et al. Antiinflammatory and antioxidant property of saponins of tea Camellia sinensis(L)O. Kuntze root extract[J]. Phytotherapy Research, 2001, 15(2):174-176. DOI:10.1002/ptr.696.
[6] 徐学君, 张秀芳, 徐德琴, 等. 黄酮类化合物调节血脂作用的研究进展[J]. 中国药房, 2016, 27(1):114-117. DOI:10.6039/j.issn.1001-0408.2016.01.37.
XU X J, ZHANG X F, XU D Q, et al. Research progress on the effect of flavonoids in regulating blood lipid[J]. China Pharmacy, 2016, 27(1):114-117.
[7] 张永田. 苦丁茶的原植物[J]. 植物分类学报, 1994, 32(1):100-102.
ZHANG Y T. Which of origin of‘Kudingcha’is really[J]. Acta Phytotaxonomica Sinica, 1994, 32(1):100-102.
[8] 杨礼旦, 王安文. 粗壮女贞繁殖与栽培技术研究[J]. 中国生态农业学报, 2005, 13(3):181-182.
YANG L D, WANG A W. The breeding and cultiv ating techniques of Ligustrum robustum[J]. Chinese Journal of Eco-Agriculture, 2005, 13(3):181-182.
[9] 邱以祥. 中国苦丁茶资源及其开发利用[J]. 自然资源, 1997(4):65-70.
QIU Y X. The resource of Kudingcha in China and its development and utilization[J].Natural Resources,1997(4):65-70.
[10] 姚立, 杨礼旦, 唐望远. 粗壮女贞的生物量研究[J]. 贵州林业科技, 2004, 32(1):27-30.
YAO L, YANG L D, TANG W Y. Study on biomass of Ligustrum lucidum[J]. Guizhou Forestry Science and Technology, 2004, 32(1):27-30.
[11] 张倩茹, 娄方明, 王强, 等. 贵州不同产地女贞属苦丁茶挥发油化学成分的GC-MS分析[J]. 中国药房, 2012, 23(31):2937-2941. DOI: 10.6039/j.issn.1001-0408.2012.31.22.
ZHANG Q R, LOU F M, WANG Q, et al. Analysis of chemical constituents of volatile oil from Ligustrum Kudingcha in different producing areas of Guizhou Province by GC-MS[J]. China Pharmacy, 2012, 23(31):2937-2941.
[12] 童华荣, 高爱红, 袁海波, 等. 女贞苦丁茶挥发油成分分析[J]. 植物资源与环境学报, 2004, 13(1):53-55.DOI:10.3969/j.issn.1674-7895.2004.01.012.
TONG H R, GAO A H, YUAN H B, et al. Volatile oils of Kudingcha from Ligustrum henryi and L.robustrum[J]. Journal of Plant Resources and Environment, 2004, 13(1):53-55.
[13] 闫小莉, 王德炉. 遮荫对苦丁茶树叶片特征及光合特性的影响[J]. 生态学报, 2014, 34(13):3538-3547. DOI: 10. 5846/stxb201306241761.
YAN X L, WANG D L. Effects of shading on the leaves and photosynthetic characteristics of Ligustrum robustum[J].Acta Ecologica Sinica, 2014, 34(13):3538-3547.
[14] 丁波, 王德炉. 硒对粗壮女贞生理特性及叶绿素荧光参数的调控效应[J]. 河南农业科学, 2012, 41(7):58-61. DOI:10.15933/j.cnki.1004-3268.2012.07.026.
DING B, WANG D L. Effect of selennium on physiological characters and chlorophyll fluoresence parameters in Ligustrum robustum[J]. Journal of Henan Agricultural Science, 2012, 41(7):58-61.
[15] UPADHYAY A, PANDA S K. Responses of Camellia sinensis to drought and rehydration[J]. Biologia Plantrum, 2004,48(4):597-600.DOI: 10.1023/b:biop.0000047158.53482.37.
[16] 李自玉, 王德炉, 闫小莉, 等.干旱对苦丁茶品质的影响[J]. 贵州农业科学, 2011, 39(2):63-66.DOI: 10.3969/j.issn.1001-3601.2011.02.021.
LI Z Y, WANG D L, YAN X L, et al. Effect of drought on quality of Kuding tea[J]. Guizhou Agricultural Sciences, 2011, 39(2):63-66.
[17] 张午燕. 生长周期苦荞叶功能性成分动态变化及其叶茶的工艺优化[D]. 太谷:山西农业大学, 2014.
ZHANG W Y. Study on dynamic changes of functional ingredients in the leaves during the growth of tartary buckwheat and development of buckwheat leaf tea [D]. Taigu: Shanxi Agricultural University, 2014.
[18] 中国农业科学院茶叶研究所. 茶树生理及茶叶生化实验手册[M]. 北京:农业出版社, 1983.
Tea Research Institute, Chinese Academy of Agricultural Sciences. Tea tree physiology and tea biochemical experiment manual[M]. Beijing: Agricultural Publishing House, 1983.
[19] 国家茶叶质量监督检验中心. 茶叶质量检验技术手册[M]. 杭州:国家茶叶质量监督检验中心出版社, 1991.
National Center for Quality Supervision and Inspection of Tea. Technical manual for the quality inspection of tea[M]. Hangzhou: The Press of National Center for Quality Supervision and Inspection of Tea, 1991.
[20] 谭新东, 肖纯. 茶树各部分茶皂素含量的测定与比较[J]. 西南园艺, 2000, 28(4):45-46.
TAN X D, XIAO C. Determination and comparison of tea saponin content in different parts of tea tree[J]. Southwest Horticulture, 2000, 28(4):45-46.
[21] 唐茜, 李永泽, 单虹丽. 川西茶区五个栽培品种春梢伸育动态初探[J]. 四川农业大学学报, 1998, 16(3):333-336. DOI: 10.16036/j.issn.1000-2650.1998.03.011
TANG Q, LI Y Z, SHAN H L. Study on the speing shoot growth dynamic of 5 varieties in west Sichuan tea area[J]. Journal of Sichuan Agricultural University, 1998, 16(3):333-336.
[22] 杨跃华, 庄雪岚, 胡海波. 土壤水分对茶树生理机能的影响[J]. 茶叶科学, 1987(1):23-28. DOI:10.13305/j.cnki. jts.1987.01.004.
YANG Y H, ZHUANG X L, HU H B. Effect of the soil water content on the physiological process of tea plant[J]. Journal of Tea Science, 1987(1):23-28.
[23] 李乃伟, 束晓春, 张明霞, 等. 土壤含水量对红豆杉紫杉醇含量及相关生理指标的影响[J]. 南京林业大学学报(自然科 学版), 2011, 35(3):75-78. DOI: 10.3969 / j. issn. 1000-2006. 2011. 03. 015.
LI N W, SHU X C, ZHANG M X, et al. Effects of soil moisture on taxol content and related physiological indexes of Taxus media cv. Hicksii [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2011, 35(3):75-78.
[24] 丁少净, 钟秋平, 袁婷婷, 等. 干旱胁迫对油茶花苞生长及产量的影响[J]. 南京林业大学学报(自然科学版), 2017,41(5):197-202. DOI: 10.3969 / j.Issn.1000-2006.201603027.
DING S J, ZHONG Q P, YUAN T T, et al. Effects of drought stress on Camellia oleifera flower-bud growth and production[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2017, 41(5):197-202.
[25] BARBERIS E, CELI L, MARTIN M. Speciation and bioavailability of soil nutrients: effect on crop production and environment[J]. Italian Journal of Agronomy, 2009, 4(1):23 DOI: 10.4081/ija.2009.s1.23
[26] 胡荣海, 昌小平. 反复干旱法的生理基础及其应用[J]. 华北农学报, 1996, 11(3):51-56.DOI: 10.3321/j.issn.1000-7091.1996.03.010.
HU R H, CHANG X P. The physiological base and utilization of repeated drought method[J]. Acta Agriculturae Boreali-Sinica, 1996, 11(3): 51-56.
[27] 阮建云, 吴洵. 土壤水分和施钾对茶树生长及产量的影响[J]. 土壤通报, 1997(5):41-43. DOI:10.19336/j.cnki.trtb.1997.05.014.
RUAN J Y, WU X. Effects of soil moisture and potassium application on the growth and yield of tea trees[J]. Chinese Journal of Soil Science, 1997(5):41-43.
[28] 胡肖肖, 金荷仙, 庄晓林, 等. 4个杜鹃品种的抗旱性比较及生理响应[J]. 森林与环境学报, 2017, 37(4):405-411. DOI: 10.13324/j.cnki.jfcf.2017.04.004.
HU X X, JIN H X, ZHUANG X L, et al. Drought resistance difference and physiological response of 4 Rhododendron cultivars[J].Journal of Forest and Environment, 2017, 37(4):405-411.
[29] JEYARAMRAJA P R, PIUS P K, KUMAR R R, et al. Soil moisture stress-induced alterations in bioconstituents determining tea quality[J]. Journal of the Science of Food & Agriculture, 2003, 83(12):1187-1191.DOI: 10.1002/jsfu.1440.
[30] 胡晓健, 欧阳献, 喻方圆. 干旱胁迫对不同种源马尾松苗木生长及生物量的影响[J]. 江西农业大学学报, 2010, 32(3):510-516.DOI: 10.13836/j.jjau.2010096.
HU X J, OUYANG X, YU F Y. Effect of drought stress on souluble sugar content in needles of Pinus massoniana seedlings feom different provenances[J].Acta Agriculturae Universitatis Jiangxiensis, 2010, 32(3):510-516.
[31] 利容千, 王建波. 植物逆境细胞及生理学[M]. 武汉: 武汉大学出版社, 2002.
LI R Q, WANG J B. Plant stress cells and physiology[M]. Wuhan: Wuhan University Press, 2002.
[32] 罗美娟, 崔丽娟, 张守攻, 等. 淹水胁迫对桐花树幼苗水分和矿质元素的影响[J]. 福建林学院学报, 2012, 32(4):336-340.DOI: 10.13324/j.cnki.jfcf.2012.04.016.
LUO M J, CUI L J, ZHANG S G, et al. Effects of flooding stress on water and mineral nutrients in Aegiceras corniculatum seedlings[J]. Journal of Fujian College of Forestry, 2012, 32(4):336-340.

备注/Memo

备注/Memo:
收稿日期:2018-01-15 修回日期:2018-10-25基金项目:贵州省农业科技攻关项目(黔科合NY字[2007]3040号); 贵州省自然科学基金项目(黔科合J字[2007]2059号); 贵州省省长优秀教育人才基金项目(黔省专合字[2006]5号)。 第一作者:吴丽丽(462500540@qq.com),ORCID(0000-0002-4357-8860)。*通信作者:王德炉(1539349567@qq.com),教授,ORCID(0000-0002-9530-4431)。引文格式:吴丽丽,王德炉,李自玉. 土壤水分对贵州小叶苦丁茶产量及品质的影响[J]. 南京林业大学学报(自然科学版),2019,43(1):111-117.
更新日期/Last Update: 2019-01-28