GAN Siming.A review on genomics information resources available for molecular breeding studies in forest trees[J].Journal of Nanjing Forestry University(Natural Science Edition),2020,44(4):001-11.[doi:10.3969/j.issn.1000-2006.202005036]





A review on genomics information resources available for molecular breeding studies in forest trees
作者单位:中国林业科学研究院热带林业研究所,热带林业研究国家林业和草原局重点实验室, 广东 广州 510520
GAN Siming
(Key Laboratory of National Forestry and Grassland Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China)
林木分子育种 基因组学 连锁作图 关联研究 基因组选择 加速育种
forest tree molecular breeding genomics linkage mapping association studies genomic selection(GS) accelerated breeding
分子育种是指利用与性状相关的DNA标记进行选育,也称标记辅助选择或标记辅助育种,广义上还包括基因工程育种和基因组学辅助育种。林木分子育种为早期选择和加速育种提供了极具潜力的高效手段。笔者对林木分子育种研究的基因组学信息资源进行了进展综述和前景展望。近30年来,林木分子标记技术从早期的低通量方法发展到目前基于微阵列芯片和新一代测序的高通量技术,如测序分型、转录组测序、重测序、扩增子测序和外显子组测序等,并广泛用于连锁作图、关联分析和基因组选择等林木性状相关的DNA变异检测研究。随着2006年毛果杨基因组序列的发表,已有50余个树种完成了基因组测序。基于连锁作图和关联研究检测了林木10余个属生长、材性和抗逆及非木质产品品质等性状相关的大量基因组位点,主要趋势表现为:① 表型广泛,涵盖经济性状、生理指标和代谢成分等;②标记数量成千上万甚至上百万,覆盖全基因组;③转录组和降解组等多组学的分子变异开始应用;④ 利用大群体以提高位点检测的精度;⑤ 重视环境的影响,大田试验设置多个地点,解析QTL与环境、年份的互作效应;⑥ 结合参考基因组序列和/或转录组差异表达基因进一步挖掘性状相关的候选基因,建立了桉属、松属和云杉属等主要造林树种的基因组选择模型。此外,积累了泛基因组、相关软件和算法、功能基因、基因组编辑技术及网站和数据库等其他信息资源。林木分子育种面临的挑战主要包括:① 如何获得稳定性好的性状相关基因组位点和基因组选择(GS)模型;② 缺乏自动化、无损和高通量的表型测定技术;③对大基因组的针叶树和一些多倍体树种,仍难获得高质量的基因组序列;④ 标记辅助选择增加了常规育种之外的费用,且存在不确定性;⑤多数树种的加速育种仍较困难。后基因组时代的林木分子育种将有效结合到常规育种程序中,显著促进遗传增益的提高。
Molecular breeding refers to selection practices based on DNA markers associated with phenotypic traits, called also as marker assisted selection or marker assisted breeding, in which genetic engineering breeding and geno?mics aided breeding were included in a broad term. It provided a potentially efficient option for early selection and accelerated breeding in forest trees. This review presents the advancement and prospects of genomics information resources for tree molecular breeding studies. In recent three decades, molecular marker techniques have been developed from earlier low-throughput assay to currently high-throughput microarray- and next-generation-sequencing-based platforms, such as genotyping by sequencing, transcriptome sequencing, genome re-sequencing, target amplicon sequencing and exome sequencing, and these high-throughput techniques have been widely used in the three main approaches for identifying trait-related DNA variations in forest trees, including linkage mapping, association genetics and genomic selection studies. More than 50 tree species have been genome sequenced since the first release of Populus trichocarpa whole genome sequence. Linkage mapping and association genetics studies have resulted in many genomic loci related with growth, wood properties and stress responses as well as non-wood product quality traits in more than 10 tree genera, highlighting the trends below: ① a multitude of phenotypic traits investigated, covering economic characteristics, physiological indices and metabolic composition; ② hundreds of thousands of markers across the whole genome scanned; ③ integration of multi-omics data; ④ large population size for high-resolution fine mapping; ⑤ multiple site trials for dissecting the interactions between genotype and environment and between genotype and age; ⑥ mining candidate genes from reference genome sequence and/or differentially expressed transcriptomic genes. Genomic selection models have been formulated for a number of major cultivation tree species in genera Eucalyptus, Pinus and Picea. Other genomic information resour ces such as pan genomes, computational tools and software packages, functional genes, genome editing techniques and online databases have also been available. Challenges that forest tree molecular breeding is facing include:① how to obtain environmentally stable trait-related genomic loci and genomic selection models; ②lacking of autonomous, non-destructive and high-throughput phenotyping methods; ③ difficulty in high-quality genome assembly for genome-large conifers and polyploidy tree species; ④ application uncertainty and balance of additional investment for marker-assisted selection in a breeding program; ⑤ technical barrier in accelerated breeding for most tree species. In the post-genome area, molecular breeding will be integrated effectively into tree breeding programs and can be expected to contribute largely to capturing higher genetic gains as compared to the traditional breeding.


1 FAO. Report of the 14th regular session of the commission on genetic resources for food and agriculture [M/OL]. Rome: Food and Agriculture Organization of the United Nations, 2013. http://www.fao.org/3/mg468e/mg468e.pdf.
2 WANG M X.Forest tree genetics and breeding [M].Beijing:China Forestry Publishing House,2001.
3 GRATTAPAGLIA D,SILVA?JUNIOR O B,RESENDE R T,et al.Quantitative genetics and genomics converge to accelerate forest tree breeding[J].Front Plant Sci,2018,9:1693. DOI:10.3389/fpls.2018.01693.
4 WATSON A,GHOSH S,WILLIAMS M J,et al.Speed breeding is a powerful tool to accelerate crop research and breeding[J].Nat Plants,2018,4(1):23. DOI:10.1038/s41477-017-0083-8.
5 MOOSE S P,MUMM R H.Molecular plant breeding as the foundation for 21st century crop improvement[J].Plant Physiol,2008,147(3):969-977. DOI:10.1104/pp.108.118232.
6 COBB J N,BISWAS P S,PLATTEN J D.Back to the future:revisiting MAS as a tool for modern plant breeding[J].Theor Appl Genet,2019,132(3):647-667. DOI:10.1007/s00122-018-3266-4.
7 PLOMION C,BASTIEN C,BOGEAT?TRIBOULOT M B,et al.Forest tree genomics:10 achievements from the past 10 years and future prospects[J].Ann For Sci,2016,73(1):77-103. DOI:10.1007/s13595-015-0488-3.
8 VARSHNEY R K,PANDEY M K,BOHRA A,et al.Toward the sequence?based breeding in legumes in the post-genome sequencing era[J].Theor Appl Genet,2019,132(3):797-816. DOI:10.1007/s00122-018-3252-x.
9 RASHEED A,XIA X C.From markers to genome-based breeding in wheat[J].Theor Appl Genet,2019,132(3):767-784. DOI:10.1007/s00122-019-03286-4.
10 MENG F J.Progresses on application of new techniques of molecular biology to forest tree breeding[M].Beijing:Science Press,2014.
11 INGVARSSON P K,HVIDSTEN T R,STREET N R.Towards integration of population and comparative genomics in forest trees[J].New Phytol,2016,212(2):338-344. DOI:10.1111/nph.14153.
12 TUSKAN G A,GROOVER A T,SCHMUTZ J,et al.Hardwood tree genomics:unlocking woody plant biology[J].Front Plant Sci,2018,9:1799. DOI:10.3389/fpls.2018.01799.
13 CHAWLA H S. Introduction to plant biotechnology[M]. 2nd Ed. Enfield: Science Publishers Inc, 2002.
14 PARSONS T J,SINKAR V P,STETTLER R F,et al.Transformation of poplar by Agrobacterium tumefaciens[J].Nat Biotechnol,1986,4(6):533-536. DOI:10.1038/nbt0686-533.
15 TULSIERAM L K,GLAUBITZ J C,KISS G,et al.Single tree genetic linkage mapping in conifers using haploid DNA from megagametophytes[J].Bio/Technology,1992,10(6):686. DOI:10.1038/nbt0692-686.
16 STRAUSS S H,LANDE R,NAMKOONG G.Limitations of molecular?marker?aided selection in forest tree breeding[J].Can J For Res,1992,22(7):1050-1061. DOI:10.1139/x92-140.
17 GRATTAPAGLIA D,SEDEROFF R.Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudotestcross:mapping strategy and RAPD markers[J].Genetics,1994,137(4):1121-1137.
18 DEVEY M E,FIDDLER T A,LIU B H,et al.An RFLP linkage map for loblolly pine based on a three?generation outbred pedigree[J].Theor Appl Genet,1994,88(3/4):273-278. DOI:10.1007/BF00223631.
19 GROOVER A,DEVEY M,FIDDLER T,et al.Identification of quantitative trait loci influencing wood specific gravity in an outbred pedigree of loblolly pine[J].Genetics,1994,138(4):1293-1300.
20 ALLONA I,QUINN M,SHOOP E,et al.Analysis of xylem formation in pine by cDNA sequencing[J].PNAS,1998,95(16):9693-9698. DOI:10.1073/pnas.95.16.9693.
21 SEWELL M M,SHERMAN B K,NEALE D B.A consensus map for loblolly pine (Pinus taeda L.).I.Construction and integration of individual linkage maps from two outbred three?generation pedigrees[J].Genetics,1999,151(1):321-330.
22 TEMESGEN B,BROWN G R,HARRY D E,et al.Genetic mapping of expressed sequence tag polymorphism (ESTP) markers in loblolly pine (Pinus taeda L.)[J].Theor Appl Genet,2001,102(5):664-675. DOI:10.1007/s001220051695.
23 CERVERA M T,STORME V,IVENS B,et al.Dense genetic linkage maps of three Populus species (Populus deltoides,P.nigra and P.trichocarpa) based on AFLP and microsatellite markers[J].Genetics,2001,158(2):787-809.
24 BRONDANI R,BRONDANI C,GRATTAPAGLIA D.Towards a genus?wide reference linkage map for Eucalyptus based exclusively on highly informative microsatellite markers[J].Mol Genet Genom,2002,267(3):338-347. DOI:10.1007/s00438-002-0665-6.
25 THUMMA B R,NOLAN M F,EVANS R,et al.Polymorphisms in cinnamoyl CoA reductase (CCR) are associated with variation in microfibril angle in Eucalyptus spp[J].Genetics,2005,171(3):1257-1265. DOI:10.1534/genetics.105.042028.
26 KIRST M,BASTEN C J,MYBURG A A,et al.Genetic architecture of transcript?level variation in differentiating xylem of a Eucalyptus hybrid[J].Genetics,2005,169(4):2295-2303. DOI:10.1534/genetics.104.039198.
27 TUSKAN G A,DIFAZIO S,JANSSON S,et al.The genome of black cottonwood,Populus trichocarpa (Torr.& Gray)[J].Science,2006,313(5793):1596-1604. DOI:10.1126/science.1128691.
28 KELLEHER C T,CHIU R,SHIN H,et al.A physical map of the highly heterozygous Populus genome:integration with the genome sequence and genetic map and analysis of haplotype variation[J].Plant J,2007,50(6):1063-1078. DOI:10.1111/j.1365-313X.2007.03112.x.
29 PAVY N,PELGAS B,BEAUSEIGLE S,et al.Enhancing genetic mapping of complex genomes through the design of highly?multiplexed SNP arrays:application to the large and unsequenced genomes of white spruce and black spruce[J].BMC Genom,2008,9(1):1-17. DOI:10.1186/1471-2164-9-21.
30 DROST D R,NOVAES E,BOAVENTURA?NOVAES C,et al.A microarray?based genotyping and genetic mapping approach for highly heterozygous outcrossing species enables localization of a large fraction of the unassembled Populus trichocarpa genome sequence[J].Plant J,2009,58(6):1054-1067. DOI:10.1111/j.1365-313X.2009.03828.x.
31 SANSALONI C,PETROLI C,CARLING J,et al.A high?density Diversity Arrays Technology (DArT) microarray for genome?wide genotyping in Eucalyptus[J].Plant Methods,2010,6(1):16. DOI:10.1186/1746-4811-6-16.
32 GERALDES A,PANG J,THIESSEN N,et al.SNP discovery in black cottonwood (Populus trichocarpa) by population transcriptome resequencing[J].Mol Ecol Resour,2011,11:81-92. DOI:10.1111/j.1755-0998.2010.02960.x.
33 RESENDE M D V,RESENDE JR M F R,SANSALONI C P,et al.Genomic selection for growth and wood quality in Eucalyptus:capturing the missing heritability and accelerating breeding for complex traits in forest trees[J].New Phytol,2012,194(1):116-128. DOI:10.1111/j.1469-8137.2011.04038.x.
34 PARCHMAN T L,GOMPERT Z,MUDGE J,et al.Genome?wide association genetics of an adaptive trait in lodgepole pine[J].Mol Ecol,2012,21(12):2991-3005. DOI:10.1111/j.1365-294X.2012.05513.x.
35 NYSTEDT B,STREET N R,WETTERBOM A,et al.The Norway spruce genome sequence and conifer genome evolution[J].Nature,2013,497(7451):579. DOI:10.1038/nature12211.
36 PORTH I,KL?P?T? J,SKYBA O,et al.Populus trichocarpa cell wall chemistry and ultrastructure trait variation,genetic control and genetic correlations[J].New Phytol,2013,197(3):777-790. DOI:10.1111/nph.12014.
37 NEVES L G,DAVIS J M,BARBAZUK W B,et al.Whole?exome targeted sequencing of the uncharacterized pine genome[J].Plant J,2013,75(1):146-156. DOI:10.1111/tpj.12193.
38 MYBURG A A,GRATTAPAGLIA D,TUSKAN G A,et al.The genome of Eucalyptus grandis[J].Nature,2014,510(7505):356. DOI:10.1038/nature13308.
39 NEALE D B,WEGRZYN J L,STEVENS K A,et al.Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies[J].Genome Biol,2014,15(3):1-13. DOI:10.1186/gb-2014-15-3-r59.
40 EVANS L M,SLAVOV G T,RODGERS?MELNICK E,et al.Population genomics of Populus trichocarpa identifies signatures of selection and adaptive trait associations[J].Nat Genet,2014,46(10):1089. DOI:10.1038/ng.3075.
41 ZHOU X H,JACOBS T B,XUE L J,et al.Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4?coumarate:CoA ligase specificity and redundancy[J].New Phytol,2015,208(2):298-301. DOI:10.1111/nph.13470.
42 SILVA?JUNIOR O B,FARIA D A,GRATTAPAGLIA D.A flexible multi?species genome?wide 60K SNP chip developed from pooled resequencing of 240 Eucalyptus tree genomes across 12 species[J].New Phytol,2015,206(4):1527-1540. DOI:10.1111/nph.13322.
43 ZHANG J,YANG Y,ZHENG K J,et al.Genome?wide association studies and expression?based quantitative trait loci analyses reveal roles of HCT2 in caffeoylquinic acid biosynthesis and its regulation by defense?responsive transcription factors in Populus[J].New Phytol,2018,220(2):502-516. DOI:10.1111/nph.15297.
44 DE LA TORRE A R,PUIU D,CREPEAU M W,et al.Genomic architecture of complex traits in loblolly pine[J].New Phytol,2019,221(4):1789-1801. DOI:10.1111/nph.15535.
45 LU W J,XIAO L,QUAN M Y,et al.Linkage?linkage disequilibrium dissection of the epigenetic quantitative trait loci (epiQTLs) underlying growth and wood properties in Populus[J].New Phytol,2020,225(3):1218-1233. DOI:10.1111/nph.16220.
46 GROVER A,SHARMA P C.Development and use of molecular markers:past and present[J].Crit Rev Biotechnol,2016,36(2):290-302. DOI:10.3109/07388551.2014.959891.
47 GARRIDO?CARDENAS J A,MESA?VALLE C,MANZANO?AGUGLIARO F.Trends in plant research using molecular markers[J].Planta,2018,247(3):543-557. DOI:10.1007/s00425-017-2829-y.
48 PARCHMAN T L,JAHNER J P,UCKELE K A,et al.RADseq approaches and applications for forest tree genetics[J].Tree Genet Genomes,2018,14(3):1-25. DOI:10.1007/s11295-018-1251-3.
49 PAVY N,LAMOTHE M,PELGAS B,et al.A high?resolution reference genetic map positioning 8.8 K genes for the conifer white spruce:structural genomics implications and correspondence with physical distance[J].Plant J,2017,90(1):189-203. DOI:10.1111/tpj.13478.
50 NEALE D B,MART?NEZ?GARC?A P J,DE LA TORRE A R,et al.Novel insights into tree biology and genome evolution as revealed through genomics[J].Annu Rev Plant Biol,2017,68:457-483. DOI:10.1146/annurev-arplant-042916-041049.
51 LIU H L,YIN T M.Progress on the whole genome sequencing and the application in woody plants[J].J Nanjing For Univ (Nat Sci Ed),2018,42(5):172-178.
52 XIA W X,XIAO Z A,CAO P,et al.Construction of a high?density genetic map and its application for leaf shape QTL mapping in poplar[J].Planta,2018,248(5):1173-1185. DOI:10.1007/s00425-018-2958-y.
53 MIZRACHI E,VERBEKE L,CHRISTIE N,et al.Network?based integration of systems genetics data reveals pathways associated with lignocellulosic biomass accumulation and processing[J].Proc Natl Acad Sci USA,2017,114(5):1195-1200. DOI:10.1073/pnas.1620119114.
54 SCAGLIONE D,PINOSIO S,MARRONI F,et al.Single primer enrichment technology as a tool for massive genotyping:a benchmark on black poplar and maize[J].Ann Bot,2019,124(4):543-551. DOI:10.1093/aob/mcz054.
55 LIU J J,SCHOETTLE A W,SNIEZKO R A,et al.Limber pine (Pinus flexilis James) genetic map constructed by exome?seq provides insight into the evolution of disease resistance and a genomic resource for genomics?based breeding[J].Plant J,2019,98(4):745-758. DOI:10.1111/tpj.14270.
56 SEMAGN K,BABU R,HEARNE S,et al.Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP):overview of the technology and its application in crop improvement[J].Mol Breed,2014,33(1):1-14. DOI:10.1007/s11032-013-9917-x.
57 LONG Y M,CHAO W S,MA G J,et al.An innovative SNP genotyping method adapting to multiple platforms and throughputs[J].Theor Appl Genet,2017,130(3):597-607. DOI:10.1007/s00122-016-2838-4.
58 JATAYEV S,KURISHBAYEV A,ZOTOVA L,et al.Advantages of Amplifluor?like SNP markers over KASP in plant genotyping[J].BMC Plant Biol,2017,17(2):83-93. DOI:10.1186/s12870-017-1197-x.
59 NEALE D B,KREMER A.Forest tree genomics:growing resources and applications[J].Nat Rev Genet,2011,12(2):111. DOI:10.1038/nrg2931.
60 RIBEIRO C L,SILVA C M,DROST D R,et al.Integration of genetic,genomic and transcriptomic information identifies putative regulators of adventitious root formation in Populus[J].BMC Plant Biol,2016,16(1):1-11. DOI:10.1186/s12870-016-0753-0.
61 ZHANG M M,BO W H,XU F,et al.The genetic architecture of shoot?root covariation during seedling emergence of a desert tree,Populus euphratica[J].Plant J,2017,90(5):918-928. DOI:10.1111/tpj.13518.
62 INDURI B R,ELLIS D R,SLAVOV G T,et al.Identification of quantitative trait loci and candidate genes for cadmium tolerance in Populus[J].Tree Physiol,2012,32(5):626-638. DOI:10.1093/treephys/tps032.
63 DU Q Z,GONG C R,WANG Q S,et al.Genetic architecture of growth traits in Populus revealed by integrated quantitative trait locus (QTL) analysis and association studies[J].New Phytol,2016,209(3):1067-1082. DOI:10.1111/nph.13695.
64 XU M,JIANG L B,ZHU S,et al.A computational framework for mapping the timing of vegetative phase change[J].New Phytol,2016,211(2):750-760. DOI:10.1111/nph.13907.
65 JIANG L B,YE M X,ZHU S,et al.Computational identification of genes modulating stem height?diameter allometry[J].Plant Biotechnol J,2016,14(12):2254-2264. DOI:10.1111/pbi.12579.
66 ZHIGUNOV A V,ULIANICH P S,LEBEDEVA M V,et al.Development of F1 hybrid population and the high?density linkage map for European aspen (Populus tremula L.) using RADseq technology[J].BMC Plant Biol,2017,17(1):1-12. DOI:10.1186/s12870-017-1127-y.
67 LIU J Y,YE M X,ZHU S,et al.Two?stage identification of SNP effects on dynamic poplar growth[J].Plant J,2018,93(2):286-296. DOI:10.1111/tpj.13777.
68 DU Q Z,YANG X H,XIE J B,et al.Time?specific and pleiotropic quantitative trait loci coordinately modulate stem growth in Populus[J].Plant Biotechnol J,2019,17(3):608-624. DOI:10.1111/pbi.13002.
69 TIAN J X,CHANG M Q,DU Q Z,et al.Single?nucleotide polymorphisms in PtoCesA7 and their association with growth and wood properties in Populus tomentosa[J].Mol Genet Genom,2014,289(3):439-455. DOI:10.1007/s00438-014-0824-6.
70 DU Q Z,TIAN J X,YANG X H,et al.Identification of additive,dominant,and epistatic variation conferred by key genes in cellulose biosynthesis pathway in Populus tomentosa[J].DNA Res,2015,22(1):53-67. DOI:10.1093/dnares/dsu040.
71 YANG X H,DU Q Z,CHEN J H,et al.Association mapping in Populus reveals the interaction between Pto?miR530a and its target Pto-KNAT1[J].Planta,2015,242(1):77-95. DOI:10.1007/s00425-015-2287-3.
72 YANG H J,YANG X H,WANG L X,et al.Single nucleotide polymorphisms in two GID1 orthologs associate with growth and wood property traits in Populus tomentosa[J].Tree Genet Genomes,2016,12(6):1-15. DOI:10.1007/s11295-016-1070-3.
73 CHEN J H,XIE J B,CHEN B B,et al.Genetic variations and miRNA?target interactions contribute to natural phenotypic variations in Populus[J].New Phytol,2016,212(1):150-160. DOI:10.1111/nph.14040.
74 FAHRENKROG A M,NEVES L G,RESENDE JR M F R,et al.Genome?wide association study reveals putative regulators of bioenergy traits in Populus deltoides[J].New Phytol,2017,213(2):799-811. DOI:10.1111/nph.14154.
75 CHEN B B,CHEN J H,DU Q Z,et al.Genetic variants in microRNA biogenesis genes as novel indicators for secondary growth in Populus[J].New Phytol,2018,219(4):1263-1282. DOI:10.1111/nph.15262.
76 QUAN M Y,XIAO L,LU W J,et al.Association genetics in Populus reveal the allelic interactions of pto?MIR167a and its targets in wood formation[J].Front Plant Sci,2018,9:744. DOI:10.3389/fpls.2018.00744.
77 QUAN M Y,DU Q Z,XIAO L,et al.Genetic architecture underlying the lignin biosynthesis pathway involves noncoding RNAs and transcription factors for growth and wood properties in Populus[J].Plant Biotechnol J,2019,17(1):302-315. DOI:10.1111/pbi.12978.
78 TIAN J X,SONG Y P,DU Q Z,et al.Population genomic analysis of gibberellin?responsive long non?coding RNAs in Populus[J].J Exp Bot,2016,67(8):2467-2482. DOI:10.1093/jxb/erw057.
79 XIE J B,TIAN J X,DU Q Z,et al.Association genetics and transcriptome analysis reveal a gibberellin?responsive pathway involved in regulating photosynthesis[J].J Exp Bot,2016,67(11):3325-3338. DOI:10.1093/jxb/erw151.
80 MCKOWN A D,GUY R D,QUAMME L,et al.Association genetics,geography and ecophysiology link stomatal patterning in Populus trichocarpa with carbon gain and disease resistance trade?offs[J].Mol Ecol,2014,23(23):5771-5790. DOI:10.1111/mec.12969.
81 MCKOWN A D,KL?P?T? J,GUY R D,et al.Genome-wide association implicates numerous genes underlying ecological trait variation in natural populations of Populus trichocarpa[J].New Phytol,2014,203(2):535-553. DOI:10.1111/nph.12815.
82 MCKOWN A D,GUY R D,KL?P?T? J,et al.Geographical and environmental gradients shape phenotypic trait variation and genetic structure in Populus trichocarpa[J].New Phytol,2014,201(4):1263-1276. DOI:10.1111/nph.12601.
83 FABBRINI F,GAUDET M,BASTIEN C,et al.Phenotypic plasticity,QTL mapping and genomic characterization of bud set in black poplar[J].BMC Plant Biol,2012,12(1):1-16. DOI:10.1186/1471-2229-12-47.
84 MONCLUS R,LEPL? J C,BASTIEN C,et al.Integrating genome annotation and QTL position to identify candidate genes for productivity,architecture and water?use efficiency in Populus spp[J].BMC Plant Biol,2012,12(1):1-15. DOI:10.1186/1471-2229-12-173.
85 CHHETRI H B,MACAYA?SANZ D,KAINER D,et al.Multitrait genome?wide association analysis of Populus trichocarpa identifies key polymorphisms controlling morphological and physiological traits[J].New Phytol,2019,223(1):293-309. DOI:10.1111/nph.15777.
86 BRESADOLA L,CASEYS C,CASTIGLIONE S,et al.Admixture mapping in interspecific Populus hybrids identifies classes of genomic architectures for phytochemical,morphological and growth traits[EB/OL].bioRxiv,2018, DOI:10.1101/497685.
87 BDEIR R,MUCHERO W,YORDANOV Y,et al.Quantitative trait locus mapping of Populus bark features and stem diameter[J].BMC Plant Biol,2017,17(1):1-13. DOI:10.1186/s12870-017-1166-4.
88 BDEIR R,MUCHERO W,YORDANOV Y,et al.Genome?wide association studies of bark texture in Populus trichocarpa[J].Tree Genet Genomes,2019,15(1):1-14. DOI:10.1007/s11295-019-1320-2.
89 WEGRZYN J L,ECKERT A J,CHOI M,et al.Association genetics of traits controlling lignin and cellulose biosynthesis in black cottonwood (Populus trichocarpa,Salicaceae) secondary xylem[J].New Phytol,2010,188(2):515-532. DOI:10.1111/j.1469-8137.2010.03415.x.
90 GUERRA F P,WEGRZYN J L,SYKES R,et al.Association genetics of chemical wood properties in black poplar (Populus nigra)[J].New Phytol,2013,197(1):162-176. DOI:10.1111/nph.12003.
91 PORTH I,KLAP?TE J,SKYBA O,et al.Genome?wide association mapping for wood characteristics in Populus identifies an array of candidate single nucleotide polymorphisms[J].New Phytol,2013,200(3):710-726. DOI:10.1111/nph.12422.
92 PORTH I,KL?P?T? J,SKYBA O,et al.Network analysis reveals the relationship among wood properties,gene expression levels and genotypes of natural Populus trichocarpa accessions[J].New Phytol,2013,200(3):727-742. DOI:10.1111/nph.12419.
93 MUCHERO W,GUO J J,DIFAZIO S P,et al.High-resolution genetic mapping of allelic variants associated with cell wall chemistry in Populus[J].BMC Genom,2015,16(1):1-14. DOI:10.1186/s12864-015-1215-z.
94 PORTH I,KL?P?T? J,MCKOWN A D,et al.Extensive functional pleiotropy of REVOLUTA substantiated through forward genetics[J].Plant Physiol,2014,164(2):548-554. DOI:10.1104/pp.113.228783.
95 BRESSON A,JORGE V,DOWKIW A,et al.Qualitative and quantitative resistances to leaf rust finely mapped within two nucleotide?binding site leucine?rich repeat (NBS?LRR)?rich genomic regions of chromosome 19 in poplar[J].New Phytol,2011,192(1):151-163. DOI:10.1111/j.1469-8137.2011.03786.x.
96 MANTIA JLA,KL?P?T? J,EL?KASSABY Y A,et al.Association analysis identifies Melampsora × Columbiana poplar leaf rust resistance SNPs[J].PLoS One,2013,8(11):e78423. DOI:10.1371/journal.pone.0078423.
97 MUCHERO W,SONDRELI K L,CHEN J G,et al.Association mapping,transcriptomics,and transient expression identify candidate genes mediating plant–pathogen interactions in a tree[J].PNAS,2018,115(45):11573-11578. DOI:10.1073/pnas.1804428115.
98 LI Y,XU B H,DU Q Z,et al.Transcript abundance patterns of Populus C?repeat binding factor2 orthologs and genetic association of PsCBF2 allelic variation with physiological and biochemical traits in response to abiotic stress[J].Planta,2015,242(1):295-312. DOI:10.1007/s00425-015-2307-3.
99 LI Y,XU B H,DU Q Z,et al.Association genetics and expression patterns of a CBF4 homolog in Populus under abiotic stress[J].Mol Genet Genom,2015,290(3):913-928. DOI:10.1007/s00438-014-0967-5.
100 MENON M,BARNES W J,OLSON M S.Population genetics of freeze tolerance among natural populations of Populus balsamifera across the growing season[J].New Phytol,2015,207(3):710-722. DOI:10.1111/nph.13381.
101 LINDTKE D,GONZ?LEZ?MART?NEZ S C,MACAYA?SANZ D,et al.Admixture mapping of quantitative traits in Populus hybrid zones:power and limitations[J].Heredity,2013,111(6):474. DOI:10.1038/hdy.2013.69.
102 DROST D R,PURANIK S,NOVAES E,et al.Genetical genomics of Populus leaf shape variation[J].BMC Plant Biol,2015,15(1):1-10. DOI:10.1186/s12870-015-0557-7.
103 CI D,SONG Y P,DU Q Z,et al.Variation in genomic methylation in natural populations of Populus simonii is associated with leaf shape and photosynthetic traits[J].J Exp Bot,2016,67(3):723-737. DOI:10.1093/jxb/erv485.
104 XIAO L,LIU X,LU W J,et al.Genetic dissection of the gene coexpression network underlying photosynthesis in Populus[J].Plant Biotechnol J,2020,18(4):1015-1026. DOI:10.1111/pbi.13270.
105 ROHDE A,STORME V,JORGE V,et al.Bud set in poplar?genetic dissection of a complex trait in natural and hybrid populations[J].New Phytol,2011,189(1):106-121. DOI:10.1111/j.1469-8137.2010.03469.x.
106 MCKOWN A D,KL?P?T? J,GUY R D,et al.Ecological genomics of variation in bud?break phenology and mechanisms of response to climate warming in Populus trichocarpa[J].New Phytol,2018,220(1):300-316. DOI:10.1111/nph.15273.
107 WANG J,DING J H,TAN B Y,et al.A major locus controls local adaptation and adaptive life history variation in a perennial plant[J].Genome Biol,2018,19(1):1-17. DOI:10.1186/s13059-018-1444-y.
108 LABB? J,JORGE V,KOHLER A,et al.Identification of quantitative trait loci affecting ectomycorrhizal symbiosis in an interspecific F1 poplar cross and differential expression of genes in ectomycorrhizas of the two parents:Populus deltoides and Populus trichocarpa[J].Tree Genet Genomes,2011,7(3):617-627. DOI:10.1007/s11295-010-0361-3.
109 YU X L,LI F G,WENG Q J,et al.Detection of quantitative trait loci related with rooting ability of cuttings and growth of Eucalyptus[J].For Res,2011,24(2):200-204. DOI:10.13275/j.cnki.lykxyj.2011.02.018.
110 BARTHOLOM? J,SALMON F,VIGNERON P,et al.Plasticity of primary and secondary growth dynamics in Eucalyptushybrids:a quantitative genetics and QTL mapping perspective[J].BMC Plant Biol,2013,13(1):1-14. DOI:10.1186/1471-2229-13-120.
111 SONG Z J,WENG Q J,ZHOU C P,et al.SSR markers associated with early growth in Eucalyptus tereticornis[J].Mol Plant Breed,2016,14(1):195-203. DOI:10.13271/j.mpb.014.000195.
112 M?LLER B S F,DE ALMEIDA FILHO J E,LIMA B M,et al.Independent and Joint?GWAS for growth traits in Eucalyptus by assembling genome?wide data for 3373 individuals across four breeding populations[J].New Phytol,2019,221(2):818-833. DOI:10.1111/nph.15449.
113 BARTHOLOM? J,MABIALA A,SAVELLI B,et al.Genetic architecture of carbon isotope composition and growth in Eucalyptus across multiple environments[J].New Phytol,2015,206(4):1437-1449. DOI:10.1111/nph.13301.
114 SHANG X H,ZHANG P J,XIE Y J,et al.SSR association analysis of Eucalyptus camaldulensis wind resistance and growth traits[J].J Nanjing For Univ (Nat Sci Ed),2018,42(4):97-105.
115 AMMITZBOLL H,VAILLANCOURT R E,POTTS B M,et al.Independent genetic control of drought resistance,recovery,and growth of Eucalyptus globulus seedlings[J].Plant Cell Environ,2020,43(1):103-115. DOI:10.1111/pce.13649.
116 KAINER D,PADOVAN A,DEGENHARDT J,et al.High marker density GWAS provides novel insights into the genomic architecture of terpene oil yield in Eucalyptus[J].New Phytol,2019,223(3):1489-1504. DOI:10.1111/nph.15887.
117 THAVAMANIKUMAR S,TIBBITS J,MCMANUS L,et al.Candidate gene?based association mapping of growth and wood quality traits in Eucalyptus globulus Labill[J].BMC Proc,2011,5(7):1-2. DOI:10.1186/1753-6561-5-S7-O15.
118 GION J M,CAROUCH? A,DEWEER S,et al.Comprehensive genetic dissection of wood properties in a widely?grown tropical tree:Eucalyptus[J].BMC Genom,2011,12(1):1-19. DOI:10.1186/1471-2164-12-301.
119 MANDROU E,HEIN P R G,VILLAR E,et al.A candidate gene for lignin composition in Eucalyptus:cinnamoyl?CoA reductase (CCR)[J].Tree Genet Genomes,2012,8(2):353-364. DOI:10.1007/s11295-011-0446-7.
120 KULLAN A R K,VAN DYK M M,HEFER C A,et al.Genetic dissection of growth,wood basic density and gene expression in interspecific backcrosses of Eucalyptus grandis and E.urophylla[J].BMC Genet,2012,13(1):1-12. DOI:10.1186/1471-2156-13-60.
121 FREEMAN J S,POTTS B M,DOWNES G M,et al.Stability of quantitative trait loci for growth and wood properties across multiple pedigrees and environments in Eucalyptus globulus[J].New Phytol,2013,198(4):1121-1134. DOI:10.1111/nph.12237.
122 DENIS M,FAVREAU B,UENO S,et al.Genetic variation of wood chemical traits and association with underlying genes in Eucalyptus urophylla[J].Tree Genet Genomes,2013,9(4):927-942. DOI:10.1007/s11295-013-0606-z.
123 CAPPA E P,EL?KASSABY Y A,GARCIA M N,et al.Impacts of population structure and analytical models in genome?wide association studies of complex traits in forest trees:a case study in Eucalyptus globulus[J].PLoS One,2013,8(11):e81267. DOI:10.1371/journal.pone.0081267.
124 THAVAMANIKUMAR S,MCMANUS L J,ADES P K,et al.Association mapping for wood quality and growth traits in Eucalyptus globulus ssp.globulus Labill identifies nine stable marker?trait associations for seven traits[J].Tree Genet Genomes,2014,10(6):1661-1678. DOI:10.1007/s11295-014-0787-0.
125 LI F G,ZHOU C P,WENG Q J,et al.Comparative genomics analyses reveal extensive chromosome colinearity and novel quantitative trait loci in Eucalyptus[J].PLoS One,2015,10(12):e0145144. DOI:10.1371/journal.pone.0145144.
126 DILLON S K,BRAWNER J T,MEDER R,et al.Association genetics in Corymbia citriodora subsp.variegata identifies single nucleotide polymorphisms affecting wood growth and cellulosic pulp yield[J].New Phytol,2012,195(3):596-608. DOI:10.1111/j.1469-8137.2012.04200.x.
127 RESENDE R T,RESENDE M D V,SILVA F F,et al.Regional heritability mapping and genome?wide association identify loci for complex growth,wood and disease resistance traits in Eucalyptus[J].New Phytol,2017,213(3):1287-1300. DOI:10.1111/nph.14266.
128 KL?P?T? J,SUONTAMA M,TELFER E,et al.Exploration of genetic architecture through sib?ship reconstruction in advanced breeding population of Eucalyptus nitens[J].PLoS One,2017,12(9):e0185137. DOI:10.1371/journal.pone.0185137.
129 MARCO DE LIMA B,CAPPA E P,SILVA?JUNIOR O B,et al.Quantitative genetic parameters for growth and wood properties in Eucalyptus “urograndis” hybrid using near?infrared phenotyping and genome?wide SNP?based relationships[J].PLoS One,2019,14(6):e0218747. DOI:10.1371/journal.pone.0218747.
130 SEXTON T R,HENRY R J,HARWOOD C E,et al.Pectin Methylesterase genes influence solid wood properties of Eucalyptus pilularis[J].Plant Physiol,2012,158(1):531-541. DOI:10.1104/pp.111.181602.
131 MANDROU E,DENIS M,PLOMION C,et al.Nucleotide diversity in lignification genes and QTNs for lignin quality in a multi?parental population of Eucalyptus urophylla[J].Tree Genet Genomes,2014,10(5):1281-1290. DOI:10.1007/s11295-014-0760-y.
132 BUTLER J B,POTTS B M,VAILLANCOURT R E,et al.Independent QTL underlie resistance to the native pathogen Quambalaria pitereka and the exotic pathogen Austropuccinia psidii in Corymbia[J].Tree Genet Genomes,2019,15(5):1-15. DOI:10.1007/s11295-019-1378-x.
133 ALVES A A,ROSADO C C G,FARIA D A,et al.Genetic mapping provides evidence for the role of additive and non?additive QTLs in the response of inter?specific hybrids of Eucalyptus to Puccinia psidii rust infection[J].Euphytica,2012,183(1):27-38. DOI:10.1007/s10681-011-0455-5.
134 BUTLER J B,FREEMAN J S,VAILLANCOURT R E,et al.Evidence for different QTL underlying the immune and hypersensitive responses of Eucalyptus globulus to the rust pathogen Puccinia psidii[J].Tree Genet Genomes,2016,12(3):1-13. DOI:10.1007/s11295-016-0987-x.
135 ZARPELON T G,SILVA GUIMAR?ES L M,FARIA D A,et al.Genetic mapping and validation of QTLs associated with resistance to Calonectria leaf blight caused by Calonectria pteridis in Eucalyptus[J].Tree Genet Genomes,2014,11(1):1-9. DOI:10.1007/s11295-014-0803-4.
136 ROSADO C C G,SILVA GUIMAR?ES L M,FARIA D A,et al.QTL mapping for resistance to Ceratocystis wilt in Eucalyptus[J].Tree Genet Genomes,2016,12(4):1-10. DOI:10.1007/s11295-016-1029-4.
137 ZHANG M M,ZHOU C P,SONG Z J,et al. The first identification of genomic loci in plants associated with resistance to galling insects:a case study in Eucalyptus L. (Myrtaceae)[J].Sci Rep,,8(1):2319. DOI:10.1038/s41598-018-20780-9.
138 BORTOLOTO T M,FUCHS?FERRAZ M C P,KETTENER K,et al.Identification of a molecular marker associated with lignotuber in Eucalyptus ssp[J].Sci Rep,2020,10:3608. DOI:10.1038/s41598-020-60308-8.
139 K?LHEIM C,YEOH S H,WALLIS I R,et al.The molecular basis of quantitative variation in foliar secondary metabolites in Eucalyptus globulus[J].New Phytol,2011,191(4):1041-1053. DOI:10.1111/j.1469-8137.2011.03769.x.
140 GOSNEY B J,POTTS B M,O’REILLY?WAPSTRA J M,et al.Genetic control of cuticular wax compounds in Eucalyptus globulus[J].New Phytol,2016,209(1):202-215. DOI:10.1111/nph.13600.
141 PADOVAN A,WEBB H,MAZANEC R,et al.Association genetics of essential oil traits in Eucalyptus loxophleba:explaining variation in oil yield[J].Mol Breed,2017,37(6):1-13. DOI:10.1007/s11032-017-0667-z.
142 CABEZAS J A,GONZ?LEZ?MART?NEZ S C,COLLADA C,et al.Nucleotide polymorphisms in a pine ortholog of the Arabidopsis degrading enzyme cellulase KORRIGAN are associated with early growth performance in Pinus pinaster[J].Tree Physiol,2015,35(9):1000-1006. DOI:10.1093/treephys/tpv050.
143 LI Y J,WILCOX P,TELFER E,et al.Association of single nucleotide polymorphisms with form traits in three New Zealand populations of radiata pine in the presence of genotype by environment interactions[J].Tree Genet Genomes,2016,12(4):1-12. DOI:10.1007/s11295-016-1019-6.
144 LU M M,KRUTOVSKY K V,NELSON C D,et al.Association genetics of growth and adaptive traits in loblolly pine (Pinus taeda L.) using whole?exome?discovered polymorphisms[J].Tree Genet Genomes,2017,13(3):1-18. DOI:10.1007/s11295-017-1140-1.
145 LEPOITTEVIN C,HARVENGT L,PLOMION C,et al.Association mapping for growth,straightness and wood chemistry traits in the Pinus pinaster Aquitaine breeding population[J].Tree Genet Genomes,2012,8(1):113-126. DOI:10.1007/s11295-011-0426-y.
146 CHHATRE V E,BYRAM T D,NEALE D B,et al.Genetic structure and association mapping of adaptive and selective traits in the east Texas loblolly pine (Pinus taeda L.) breeding populations[J].Tree Genet Genomes,2013,9(5):1161-1178. DOI:10.1007/s11295-013-0624-x.
147 CUMBIE W P,ECKERT A,WEGRZYN J,et al.Association genetics of carbon isotope discrimination,height and foliar nitrogen in a natural population of Pinus taeda L[J].Heredity,2011,107(2):105-114. DOI:10.1038/hdy.2010.168.
148 LIND B M,FRIEDLINE C J,WEGRZYN J L,et al.Water availability drives signatures of local adaptation in whitebark pine (Pinus albicaulis Engelm.) across fine spatial scales of the Lake Tahoe Basin,USA[J].Mol Ecol,2017,26(12):3168-3185. DOI:10.1111/mec.14106.
149 WESTBROOK J W,RESENDE JR M F R,MUNOZ P,et al.Association genetics of oleoresin flow in loblolly pine:discovering genes and predicting phenotype for improved resistance to bark beetles and bioenergy potential[J].New Phytol,2013,199(1):89-100. DOI:10.1111/nph.12240.
150 YANG H X,LIU T Y,XU B,et al.Analysis of single nucleotide polymorphisms within candidate genes involved in growth and resin biosynthesis of loblolly pine[J].J South China Agric Univ,2016,37(1):75-81.
151 LIU J J,SCHOETTLE A W,SNIEZKO R A,et al.Genetic mapping of Pinus flexilis major gene (Cr4) for resistance to white pine blister rust using transcriptome?based SNP genotyping[J].BMC Genom,2016,17(1):1-12. DOI:10.1186/s12864-016-3079-2.


更新日期/Last Update: 2020-08-13