[1]吕莹莹,任芯雨,李明诗*.基于TM/ETM+数据的南京三区域城市森林干扰指数及分析[J].南京林业大学学报(自然科学版),2014,38(01):077-82.[doi:10.3969/j.issn.1000-2006.2014.01.014]
 LYU Yingying,REN Xinyu,LI Mingshi*.Assessing forest disturbance patterns over the three forested areas of Nanjing using multi-temporal TM/ETM+ imagery[J].Journal of Nanjing Forestry University(Natural Science Edition),2014,38(01):077-82.[doi:10.3969/j.issn.1000-2006.2014.01.014]
点击复制

基于TM/ETM+数据的南京三区域城市森林干扰指数及分析
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
38
期数:
2014年01期
页码:
077-82
栏目:
研究论文
出版日期:
2014-02-16

文章信息/Info

Title:
Assessing forest disturbance patterns over the three forested areas of Nanjing using multi-temporal TM/ETM+ imagery
文章编号:
1000-2006(2014)01-0077-06
作者:
吕莹莹任芯雨李明诗*
南京林业大学森林资源与环境学院,江苏 南京 210037
Author(s):
LYU Yingying REN Xinyu LI Mingshi*
College of Forest Resource and Environment, Nanjing Forestry University, Nanjing 210037, China
关键词:
干扰指数 Landsat TM/ETM+ 干扰模式 驱动力分析 城市森林 南京
Keywords:
forest disturbance index Landsat TM/ETM+ disturbance patterns driving forces analysis urban forests Nanjing
分类号:
S725; TP79
DOI:
10.3969/j.issn.1000-2006.2014.01.014
文献标志码:
A
摘要:
以南京紫金山、幕府山和老山为研究对象,利用1992、1995、1998、2001、2003、2005、2007和2011年8期的Landsat TM /ETM+数据进行缨帽变换,通过对变换后的各分量进行归一化操作进而建立森林干扰指数模型,然后进行3个区域森林干扰指数分级操作,最后借助森林资源二类调查数据以及Google Earth影像的目视解译结果,对发展的森林干扰指数分析方法进行了验证。验证结果表明:基于Landsat TM/ETM+数据而发展的森林干扰分析方法是有效且可靠的。南京3个区域的森林干扰在1992—2001年间变化不明显,2001—2005年干扰上升明显,2005年之后下降趋势明显。空间上,幕府山森林受干扰最强,老山林场次之,紫金山最小。每个区域干扰强度的分布也各有特点,但相同的是区域周边的干扰指数明显大于中心地区。驱动南京城市森林干扰时空变化的因素主要包括人口增长、经济开发活动及景区游览等。
Abstract:
Taking the three areas of Zijin, Mufu and Laoshan Mountains located in Nanjing as the case study, using the Landsat TM/ETM+ observations dated in 1992, 1995, 1998, 2001, 2003, 2005, 2007 and 2011, indices including brightness, greenness and wetness derived from the tasseled cap transform were obtained first, followed by the establishment of the forest disturbance index via a normalization approach. Ultimately, grading the forest disturbance severity was made and the forest disturbance analyses were in part validated by using the forest resources inventories coupled with the high spatial resolution Google Earth imagery. Results showed that the forest disturbance analysis methods developed from Landsat TM/ETM+ imagery in the current work were effective and reliable after an intensive validation. Forest disturbance intensity remained almost unchanged during the period 1992 to 2001, giving way to an increase in forest disturbance severity over the time period 2001 to 2005, connecting to a declining trend after 2005. Additionally, the average disturbance values of the three regions differed from each other, Mufu Mountains with the strongest forest disturbance and Zijin Mountains the lowest, which adequately reflects the differences in forest management purposes and approaches. Distribution of forest disturbance severity of the regions also had their own characteristics, but the patterns that higher disturbance severities were observed along the boundaries of the three regions, with lower disturbance levels located in the central portions of the regions, were same. Ultimately, the driving forces responsible for the differences in observed forest disturbances were identified as demographic expansion, mining events, forest logging and forest insects and disease and forest eco-tourism.

参考文献/References:

[1] 朱教君,刘足根. 森林干扰生态研究[J].应用生态学报,2004,15(10):1703-1710. Zhu J J,Liu Z G.A review on disturbance ecology of forest[J].Chinese Journal of Applied Ecology, 2004,15(10):1703-1710.
[2] Hilker T,Wuler M A,Coops N C, et al. Detection of foliage conditions and disturbance from multi-angular high spectral resolution remote sensing[J]. Remote Sensing of Environment, 2009,113(2):421-434.
[3] Healey S P,Cohen W B,Yang Z Q,et al. Comparison of Tasseled Cap-based Landsat data structures for use in forest disturbance detection[J]. Remote Sensing of Environment, 2005, 97(3):301-310.
[4] 王照利,黄生,张敏中,等. 森林资源调查中SPOT5遥感图像处理方法探讨[J].陕西林业科技,2005(1):27-29. Wang Z L, Huang S, Zhang M Z, et al. Discussion on SPOT5 image data processing for forest inventory[J]. Shaanxi Forest Science and Technology, 2005(1):27-29.
[5] Cohen W B, Goward S N. Landsat’s role in ecological applications of remote sensing [J]. Bioscience, 2004,54(6):535-545.
[6] Vogelmann J E, Xian G, Homer C,et al. Monitoring gradual ecosystem change using Landsat time series analyses:Case studies in selected forest and rangeland ecosystems[J].Remote Sensing of Environment, 2012,122:92-105.
[7] 李明阳,熊显权,杨劲松,等. 紫金山风景林景观格局变化的研究[J].中南林业调查规划,2005,24(4):23-26. Li M Y, Xiong X Q, Yang J S, et al. Research on dynamic of landscape pattern of scenic forest in Purple Golden Mountain[J].Central South Forest Inventory and Planning, 2005,24(4):23-26.
[8] 李林,汤庚国,许晓岗. 南京幕府山植物区系研究[J].南京林业大学学报:自然科学版,2006,30(2):38-42. Li L, Tang G G, Xu X G. Studies on flora of Mountain Mufu Nanjing [J].Journal of Nanjing Forestry University:Natural Sciences Edition, 2006,30(2):38-42.
[9] 凌云,张光富,龚滨. 南京老山国家森林公园植物区系及其与邻近地区的关系[J].安徽农业科学,2010,38(36):20938-20942. Ling Y, Zhang G F, Gong B. Flora of Laoshan National Forest Park in Nanjing and its relationship with near regions[J]. Journal of Anhui Agricultural Sciences, 2010, 38(36):20938-20942.
[10] 陈超,江涛,刘祥磊. 基于缨帽变换的遥感图像融合方法研究[J].测绘科学,2009,34(4):105-107. Chen C, Jiang T, Liu X L. Research on remote sensing image fusion methods based on tasseled cap transformation[J].Science of Surveying and Mapping,2009,34(4):105-107.
[11] 戎慧,李明诗,沈文娟,等. 急剧城市化背景下森林破碎化模式分析——以浙江余杭区为例[J].西北林学院学报,2012,27(1):173-178. Rong H, Li M S, Shen W J, et al. Assessment of forest fragmentation driven by the intensive urbanization——A case study of Yu hang district[J]. Journal of Northwest Foresty University, 2012,27(1):173-178.
[12] 李明诗,彭世揆,钟宏宇,等.基于GIS的紫金山风景区景观格局及其动态分析[J].南京林业大学学报:自然科学版,2004,28(5):67-70. Li M S,Peng S K,Zhong H Y,et al. Landscape pattern and dynamic analysis of Purple Mountain scenic zone based on GIS[J]. Journal of Nanjing Forestry University:Natural Sciences Edition, 2004,28(5):67-70.
[13] Thomas N E,Huang C,Goward S N,et al. Validation of north American forest disturbance dynamics derived from Landsat time series stacks[J]. Remote Sensing of Environment, 2011, 115(1):19-32.
[14] Hilker T,Wuler M A,Coops N C, et al. A new data fusion model for high spatial and temporal resolution mapping of forest disturbance based on Landsat and MODIS[J]. Remote Sensing of Environment, 2009,113:1613-1627.
[15] 南京市统计局.2012年南京统计年鉴[M].北京:中国统计出版社,2012.
[16] 孙伟,朱诚,王晓翠,等.南京幕府山地区地质灾害与地热调查[J].山地学报,2011,29(6):753-758. Sun W, Zhu C, Wang X C, et al. Investigation of geothermal resource and geologic hazards at Mufu Mountain area in Nanjing[J].Journal of Mountain Science, 2011,29(6):753-758.
[17] 郑光,田庆久,李明诗. 基于 ETM+ 遥感影像的南京市城市绿地的动态监测[J].遥感信息,2005(5):22-24. Zheng G, Tian Q J,Li M S. The greenbelt fynamic monitoring of Nanjing based on ETM+ images[J]. Remote Sensing Information, 2005(5):22-24.
[18] 丁胜,温作民. 南京老山林场森林生态系统适应性管理问题的探讨[J].价值工程,2010(32):15-17. Ding S,Wen Z M. Discussion on adaptive management of forest ecosystem at Nanjing Laoshan Forest Farm[J]. Value Engineering, 2010(32):15-17.
[19] 徐海兵,余金保,万志洲,等. 南京中山陵园风景区森林资源消长变化情况调查与分析[J].江苏林业科技,2004,31(1):9-11. Xu H B, Yu J B, Wan Z Z, et al. Investigation and Analysis on the changes of forest resources in Nanjing Mausoleum Scenic Area in Zhongshan[J]. Journal of Jiangsu Forestry Science & Technology, 2004,31(1):9-11.
[20] 祝遵凌,何伟. 南京市老山采矿区森林景观重建[J]. 林业资源管理,2011,29(2):97-100. Zhu Z L, He W. Forest landscape reconstruction of mining area in Laoshan of Nanjing[J].Forest Resources Management, 2011,29(2):97-100.

备注/Memo

备注/Memo:
收稿日期:2013-06-24 修回日期:2013-10-20
基金项目:国家林业公益性行业科研专项项目(201304208); 国家自然科学基金项目(31270587)
第一作者:吕莹莹,硕士生。*通信作者:李明诗,教授,博士。E-mail:nfulms@aliyun.com
引文格式:吕莹莹,任芯雨,李明诗. 基于TM/ETM+数据的南京三区域城市森林干扰指数及分析[J]. 南京林业大学学报:自然科学版,2014,38(1):77-82.
更新日期/Last Update: 2014-01-15