[1]闫小红,周 兵,王 宁,等.基于光响应机理模型的3种草本植物 光合特性差异解析[J].南京林业大学学报(自然科学版),2016,40(03):063-69.[doi:10.3969/j.issn.1000-2006.2016.03.011]
 YAN Xiaohong,ZHOU Bing,WANG Ning,et al.Differences of photosynthetic characteristics based on a mechanisticmodel of light-response for three herbaceous plants[J].Journal of Nanjing Forestry University(Natural Science Edition),2016,40(03):063-69.[doi:10.3969/j.issn.1000-2006.2016.03.011]
点击复制

基于光响应机理模型的3种草本植物 光合特性差异解析
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
40
期数:
2016年03期
页码:
063-69
栏目:
研究论文
出版日期:
2016-05-18

文章信息/Info

Title:
Differences of photosynthetic characteristics based on a mechanistic model of light-response for three herbaceous plants
文章编号:
1000-2006(2016)03-0063-07
作者:
闫小红12周 兵2王 宁2叶子飘2尹增芳1*
1.南京林业大学生物与环境学院,江苏 南京 210037;
2. 井冈山大学生命科学学院,江西 吉安 343009
Author(s):
YAN Xiaohong12 ZHOU Bing2 WANG Ning2 YE Zipiao2 YIN Zengfang1*
1. College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, China;
2. School of Life Sciences, Jinggangshan University, Ji'an 343009, China
关键词:
光响应机理模型 优势种 捕光色素 光合电子传递 有效光能吸收截面 大狼把草 山莴苣 酸模叶蓼
Keywords:
light response mechanistic model dominant species light-harvesting pigment photosynthetic electron transfer effective light energy absorption cross-section Bidens frondosa Lactuca indica Polygonum lapathifolium
分类号:
Q948; S45
DOI:
10.3969/j.issn.1000-2006.2016.03.011
文献标志码:
A
摘要:
利用植物光响应机理模型,比较了大狼把草(Bidens frondosa)、山莴苣(Lactuca indica)和酸模叶蓼(Polygonum lapathifolium)光合特性的差异。结果表明,大狼把草和酸模叶蓼在中、高光强部分的电子传递速率(J)明显高于山莴苣,并且在高光强部分二者没有出现明显的光抑制,而山莴苣则光抑制较明显。大狼把草和酸模叶蓼在各光强下的净光合速率(Pn)也明显高于山莴苣。3种植物成熟叶片叶绿素的含量依次是大狼把草>酸模叶蓼>山莴苣,类胡萝卜素含量依次为酸模叶蓼>大狼把草>山莴苣。山莴苣的叶绿素含量虽然最少,但它的捕光色素分子本征光能吸收截面(σik)最大; 与之相反,大狼把草的叶绿素含量最多,但σik最小,酸模叶蓼的叶绿素含量和σik则介于二者之间。大狼把草和酸模叶蓼的最大电子传递速率(Jmax)明显高于山莴苣,二者是通过增加有效光能吸收截面,以及缩短τmin值提高电子传递速率。相对于山莴苣,大狼把草和酸模叶蓼具有更高的最大净光合速率(Pn,max)、光饱和点(Isat)和暗呼吸速率(Rd)。大狼把草更高的非光化学猝灭系数(qNPQ)有利于热耗散,避免光损伤。酸模叶蓼更高的类胡萝卜素含量,在耗散过剩的激发能上具有积极作用,有助于植物体免受高温、高光、干旱等逆境伤害。综上所述,相较于山莴苣,大狼把草和酸模叶蓼应该对环境胁迫有更好的耐受性和适应性。
Abstract:
A mechanistic model of light-response of photosynthesis was used to compare the differences of photosynthetic characteristics for Bidens frondosa, Lactuca indica and Polygonum lapathifolium. The results showed that the electron transport rates of B. frondosa and P. lapathifolium were significantly higher than that of L. indica under middle and high light, and neither appeared photinhibition under high light, whereas L. indica appeared photinhibition significantly. Net photosynthetic rate(Pn)of B. frondosa and P. lapathifolium were higher than that of L.indica under different light intensity. Chlorphyll content of three plants mature leave listed as B. frondosa>P. lapathifolium>L.indica, and P. lapathifolium>B. frondosa>L.indica for carotenoid content. Although chlorphyll content of L. indica was the lowest, its eign-absorption cross-section(σik)was the maximum. On the contrary, chlorphyll content of B. frondosa was the highest, and its σikwas the lowest. Chlorphyll content of P. lapathifolium and σik were between the other two species. The maximum electron transport rates of B. frondosa and P. lapathifolium were significantly higher than that of L. indica, which improved their electron transport rates through increasing the effective light absorption cross-section of photosynthetic pigments(σik')and decreasing the minimum average life time of photosynthetic pigment molecules in the excited state(τmin). Compared with L.indica, B. frondosa and P. lapathifolium had higher the maximal net photosynthetic rate(Pn,max), light saturation point(Isat), and dark respiratory rate(Rd).The higher NPQ of B. frondosa was helpful for thermal dissipation, and avoiding light damage. The higher arotenoid content of P. lapathifolium exerted positive effects on dissipating excess excitation energy, which was contributed to its avoid of the stress damage as high temperatures, high lights and drought. In conclusion, compared with L. indica, B. frondosa and P. lapathifolium might have better tolerance and adaptablity under environmental stress.

参考文献/References:

[1] 许大全. 光合作用学[M]. 北京:科学出版社, 2013.
[2] 鄢圣敏, 杨国涛, 马坤, 等. 4个水稻品种(组合)光合特性的比较研究[J].中国农学通报, 2014, 30(3): 44-48. Yan S M, Yang G T, Ma K, et al. Comparative study on photosynthetic characteristics of four rice varieties(Combinations)[J]. Chinese Agricultural Science Bulletin, 2014, 30(3): 44-48.
[3] 倪建中, 王伟, 郁书君, 等. 不同种源木棉生长及光合特性研究[J]. 南京林业大学学报(自然科学版), 2015, 39(6): 185-189. Doi:10.3969/j.issn.1000-2006.2015.06.033. Ni J Z, Wang W, Yu S J, et al. Analysis of growth traits and photosynthetic characteristics of Bombax ceiba among different provenances[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2015, 39(6): 185-189.
[4] 王晓红, 纪明山. 入侵植物小飞蓬及其伴生植物的光合特性[J]. 应用生态学报, 2013, 24(1): 71-77. Wang X H, Ji M S. Photosynthetic characteristics of an invasive plant Conyza canadensis and its associated plants[J]. Journal of Applied Ecology, 2013, 24(1): 71-77.
[5] Gong C, Wang J, Hu C, et al. Interactive response of photosynthetic characteristics in Haloxylon ammodendron and Hedysarum scoparium exposed to soil water and air vapor pressure deficits[J]. Journal of Environmental Sciences, 2015, 34(8): 184-196. Doi:10.1016/j.jes.2015.03.012.
[6] Turnbull M H. The Effect of light quantity and quality during development on the photosynthetic characteristics of six Australian rain forest tree species[J]. Endocrinology, 2015, 36(3): 542-546.
[7] 皇甫超河, 王志勇, 杨殿林. 外来入侵种黄顶菊及其伴生植物光合特性初步研究[J]. 西北植物学报, 2009, 29(4): 781-788.Doi:10.3321/j.issn:1000-4025.2009.04.021. HuangFu C H, Wang Z Y, Yang D L. Basic photosynthetic characteristics of exotic invasive weed Flaveria bidentis and its comanion species[J]. Acta Botanica Boreali Occidentalia Sinica, 2009, 29(4): 781-788.
[8] Lawlor D W, Cornic G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants [J]. Plant Cell and Environment, 2002, 25(2): 275-294.
[9] 张永征, 李海东, 李秀, 等. 光强和水分胁迫对姜叶片光合特性的影响[J]. 园艺学报, 2013,40(11):2255-2262. Doi:10.3969/j.issn.0513-353X.2013.11.018. Zhang Y Z, Li H D, Li X, et al. Effects of light intensity and water stress on leaf photosynthetic characteristics of ginger[J]. Acta Horticulturae Sinica, 2013, 40(11):2255-2262.
[10] 丁俊祥, 邹杰, 唐立松, 等. 克里雅河流域荒漠-绿洲交错带3种不同生活型植物的光合特性[J]. 生态学报, 2015, 35(3): 733-741.Doi:10.5846/stxb201310302623. Ding J X, Zou J, Tang L S, et al. Photosynthetic characteristics of three different life-form plants in the desert-oasis ecotone of Keiya River Basin[J]. Acta Ecologica Sinica, 2015, 35(3): 733-741.
[11] Bassman J H, Zwier J C. Gas exchange characteristics of Populus trichocarpa, Populus deltoids and Populus trichocarpa × P. deltoids[J]. Tree Physiology, 1991, 8(2): 145-159.
[12] Baly E C. The kinetics of photosynthesis[J]. Proceedings of the Royal Society of London Series B(Biological Sciences), 1935, 117: 218-239.
[13] Farquhar G D, von Caemmerer S, Berry J A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species[J]. Planta, 1980, 149(1):78-90. Doi:10.1007/bf00386231.
[14] 闫小红, 尹建华, 段世华, 等. 四种水稻品种的光合光响应曲线及其模型拟合[J]. 生态学杂志, 2013, 32(3): 604-610. Yan X H, Yin J H, Duan S H, et al. Photosynthesis light response curves of four rice varieties and model fitting[J]. Chinese Journal of Ecology, 2013, 32(3): 604-610.
[15] Ye Z P, Robakowski P, Suggett D J. A mechanistic model for the light response of photosynthetic electron transport rate based on light harvesting properties of photosynthetic pigment molecules[J]. Planta, 2013, 237(3):837-847. Doi:10.1007/s00425-012-1790-z.
[16] Ye Z P, Suggett J D, Robakowski P, et al. A mechanistic model for the photosynthesis-light response based on the photosynthetic electron transport of photosystem II in C3 and C4 species[J]. New Phytologist, 2013, 199(1):110-120. Doi:10.1111/nph.12242.
[17] Arnon D I. Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris[J]. Plant Physiology, 1949, 24(1):1-15.
[18] Chazdon R L, Pearcy R W, Lee D W, et al. Photosynthetic responses of tropical forest plants to contrasting light environments[J]. Tropical Forest Plant Ecophysiology, 1996:5-55. Doi:10.1007/978-1-4613-1163-8_1.
[19] 叶子飘, 胡文海, 肖宜安, 等. 光合电子流对光响应的机理模型及其应用[J]. 植物生态学报, 2014, 38(11):1241-1249. Doi:10.3724/SP.J.1258.2014.00119. Ye Z P, Hu W H, Xiao Y, et al. A mechanistic model of light-response of photosynthetic electron flow and its application[J]. Chinese Journal of Plant Ecology, 2014, 38(11):1241-1249.
[20] Valentini R, Epron D, de Angelis P, et al. In situ estimation of net CO2 assimilation, photosynthetic electron flow and photorespiration in Turkey oak(Q. cerris L.)leaves: diurnal cycles under different levels of water supply[J]. Plant Cell and Environment, 1995, 18(6): 631-640.
[21] Harley P C, Thomas R B, Reynolds J F, et al. Modelling photosynthesis of cotton grown in elevated CO2[J]. Plant, Cell and Environment, 1992, 15(3):271-282. Doi:10.1111/j.1365-3040.1992.tb00974.x.
[22] 王强, 金则新, 郭水良, 等. 濒危植物长叶榧的光合生理生态特性[J]. 生态学报, 2014, 34(22):6460-6470. Doi:10.5846/stxb201302260307. Wang Q, Jin Z X, Guo S L, et al. Photosynthetic traits of the endangered plant species Torreya jackii[J]. Acta Ecologica Sinica, 2014, 34(22):6460-6470.
[23] 杨婷, 许琨, 严宁, 等. 三种高山杜鹃的光合生理生态研究[J]. 植物分类与资源学报, 2013, 35(1):17-25. Doi:10.7677/ynzwyj201312056. Yang T, Xu K, Yan N, et al. Photosynthetic ecophysiology of three species of genus Rhododendron[J]. Plant Diversity and Resources, 2013, 35(1):17-25.
[24] Amthor J S. Respiration and crop productivity[M]. New York: Spinger-Verlag, 1989.
[25] McDowell S C L. Photosynthetic characteristics of invasive and noninvasive species of Rubus (Rosaceae)[J].American Journal of Botany, 2002, 89(9): 1431-1438. Doi:10.3732/ajb.89.9.1431.
[26] Zheng Y L, Feng Y L, Lei Y B, et al. Comparisons of plastic responses to irradiance and physiological traits by invasive Eupatorium adenophorum and its native congeners[J]. Journal of Plant Physiology, 2012, 169(9): 884-891. Doi:10.1016/j.jplph.2012.02.011.
[27] 王高鸿, 陈兰洲, 李根保, 等. 改变捕光色素比例用于提高微藻光合效率[J]. 科学通报, 2005, 50(14):1475-1479. Doi:10.3321/j.issn:0023-074X.2005.14.011.
[28] Heraud P, Beardall J. Changes in chlorophyll fluorescence during exposure of Dunaliella tertiolecta to UV radiation indicate a dynamic interaction between damage and repair processes[J]. Photosynthesis Research, 2000, 63(2): 123-134. Doi:10.1023/A:1006319802047.
[29] Heber U, Bilger W, Türk R, et al. Photoprotection of reaction centres in photosynthetic organisms: mechanisms of thermal energy dissipation in desiccated thalli of the lichen Lobaria pulmonaria[J]. New Phytologist, 2010, 185(2):459-470. Doi:10.1111/j.1469-8137.2009.03064.
[30] García-Plazaola J I, Esteban R, Fernández-Marín B, et al. Thermal energy dissipation and xanthophyll cycles beyond the Arabidopsis model[J]. Photosynthesis Research, 2012, 113(1-3): 89-103. Doi:10.1007/s11120-012-9760-7.
[31] Palliotti A, Tombesi S, Frioni T, et al. Physiological parameters and protective energy dissipation mechanisms expressed in the leaves of two Vitis vinifera L. genotypes under multiple summer stresses[J]. Journal of Plant Physiology, 2015, 185: 84-92. Doi:10.1016/j.jplph.2015.07.007.
[32] 赵广琦, 张利权, 梁霞. 芦苇与入侵植物互花米草的光合特性比较[J]. 生态学报, 2005, 25(7): 1604-1611. Doi:10.3321/j.issn:1000-0933.2005.07.011. Zhao G Q, Zhang L Q, Liang X. A comparison of phtosynthetic characteristics between an nivasive plant Spartina alterniflora and an indigenous plant Phragmites australis[J]. Acta Ecologica Sinica, 2005, 25(7):1604-1611.
[33] 朱慧, 马瑞君. 入侵植物假臭草及其伴生种的光合特性[J]. 福建林学院学报, 2010, 30(2): 145-149. Doi:10.3969/j.issn.1001-389X.2010.02.012. Zhu H, Ma R J. Comparison of photosynthetic characteristics between an invasive plant, Eupatorium catarium and associated species[J]. Journal of Fjujian College of Forestry, 2010, 30(2): 145-149.
[34] Nagel J M, Griffin K L. An gas-exchange characteristics help explain the invasive success of Lythrum salicaria?[J]. Biological Invasions, 2004, 6(1):101-111. Doi:10.1023/b:binv.0000010125.93370.32.

相似文献/References:

[1]陈 霞,等.紫金山针阔混交林主要树种空间分布格局及种间关联性[J].南京林业大学学报(自然科学版),2018,42(06):084.[doi:10.3969/j.issn.1000-2006.201708039]
 CHEN Xia,YUAN Zaixiang,et al.Spatial distribution pattern and interspecific association of dominant tree species in a broad-leaved mixed forest on Zijin Mountain[J].Journal of Nanjing Forestry University(Natural Science Edition),2018,42(03):084.[doi:10.3969/j.issn.1000-2006.201708039]
[2]许宝坤,许晓岗,李 垚,等.黄山常绿阔叶林甜槠群落优势种种间关联分析[J].南京林业大学学报(自然科学版),2019,43(04):077.[doi:10. 3969/ j. issn. 1000-2006. 201810038]
 XU Baokun,XU Xiaogang,LI Yao,et al.Interspecific association analysis of Castanopsis eyrei community in evergreen broad-leaved forests in Huangshan, Anhui Province[J].Journal of Nanjing Forestry University(Natural Science Edition),2019,43(03):077.[doi:10. 3969/ j. issn. 1000-2006. 201810038]

备注/Memo

备注/Memo:
收稿日期:2015-06-25 修回日期:2016-03-18
基金项目:国家自然科学基金项目(31240015,31360090); 江苏高校优势学科建设工程资助项目(PAPD); 江西省高等学校科技落地计划项目(KJLD12079)
第一作者:闫小红(yanxiaohong325@126.com),高级实验师,博士。*通信作者:尹增芳(zfyin@njfu.edu.cn),教授,博士。
引文格式:闫小红,周兵,王宁,等. 基于光响应机理模型的3种草本植物光合特性差异解析[J]. 南京林业大学学报(自然科学版),2016,40(3):63-69.
更新日期/Last Update: 2016-06-30