[1]冯 凯,侯 静,戴晓港,等.簸箕柳SPL基因家族分析[J].南京林业大学学报(自然科学版),2017,41(02):055-62.[doi:10.3969/j.issn.1000-2006.2017.02.009]
 FENG Kai,HOU Jing,DAI Xiaogang,et al.Analyzing the SPL gene family in Salix suchowensis[J].Journal of Nanjing Forestry University(Natural Science Edition),2017,41(02):055-62.[doi:10.3969/j.issn.1000-2006.2017.02.009]
点击复制

簸箕柳SPL基因家族分析/HTML
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
41
期数:
2017年02期
页码:
055-62
栏目:
研究论文
出版日期:
2017-03-23

文章信息/Info

Title:
Analyzing the SPL gene family in Salix suchowensis
文章编号:
1000-2006(2017)02-0055-08
作者:
冯 凯 侯 静 戴晓港 李淑娴*
南方现代林业协同创新中心,南京林业大学林学院,江苏 南京 210037
Author(s):
FENG Kai HOU Jing DAI Xiaogang LI Shuxian*
Co-Innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
关键词:
簸箕柳 花发育 SPL基因家族 基因复制
Keywords:
Salix suchowensis flower development SPL gene family gene duplication
分类号:
S718; Q811.4
DOI:
10.3969/j.issn.1000-2006.2017.02.009
文献标志码:
A
摘要:
【目的】确定SPL基因家族在不同物种之间的选择性保留和丢失情况,为后续研究被子植物花发育提供参考。【方法】通过在拟南芥(Arabidopsis thaliana)、毛果杨(Populus trichocarpa)、簸箕柳(Salix suchowensis)、葡萄(Vitis vinifera)、番木瓜(Carica papaya)、水稻(Oryza sativa)6种被子植物基因组中查找SPL结构域,寻找6个物种的SPL同源序列。对所找到的SPL序列进行BLASTN比对鉴定同源基因类型。使用自编Perl脚本结合KaKs_Calculator计算SPL同源基因的非同义突变(Ka)以及同义突变(Ks)值,采用共线性分析确定该基因家族的复制和扩张方式。【结果】在6种被子植物基因组中,共发现120个SPL基因。根据种内和种间旁系同源、直系同源基因以及这些同源基因选择压的计算显示:杨柳科SPL同源基因最多,共有旁系同源基因24对,直系同源基因50对; 番木瓜没有旁系同源基因。6个物种中,木本植物比草本植物直系同源基因更多,双子叶植物比单子叶植物直系同源基因更多; 所有旁系同源和直系同源基因的Ka/Ks值均小于1。系统发育树的分析结果与基因同源性分析基本吻合,证明了这两种分析方法具有较高的可靠性。此次研究选取了簸箕柳同一植株上开花和不开花的枝条进行了转录组测序分析,差异表达分析发现了1个SPL基因(willow_GLEAN_10025160)在两种枝条的转录组中表达差异显著(P≤0.01),其在开花枝条中的表达量显著高于未开花枝条,该基因被选为SPL基因家族中参与簸箕柳开花调控的候选基因。【结论】通过对6个物种SPL基因家族的分析,发现6个物种中所有直系同源和旁系同源基因都经历了纯化选择(Ka/Ks<1),基因功能保守。这6个物种除了经历过全基因组复制事件,还发生过大规模的基因丢失或者通过其他方式产生的基因扩张,阐明了它们在进化历史上的复制事件及SPL基因在不同物种中的选择性保留与丢失情况,为进一步研究其在调控簸箕柳开花中的作用提供了有力证据。
Abstract:
【Objective】This study focused mainly on the differential retention and expansion of the SPL gene family in different species and provided a basis for future study of floral development in angiosperms. 【Method】The SPL gene families of Arabidopsis thaliana, Populus trichocarpa, Salix suchowensis, Vitis vinifera, Carica papaya and Oryza sativa were identified using homology comparison against the SPL domain. BLASTN was used to identify different types of homologous gene pairs. We used in-house Perl scripts combined with KaKs_Calculator to calculate the non-synonymous mutation(Ka)and synonymous mutation(Ks)values of each SPL gene pair. Differential retention and expansion of the SPL gene families of these six angiosperms were determined by synteny analysis. 【Result】 We detected 120 SPL genes in the examined plants. By analyzing the paralogous and orthologous SPL genes among the six species, we found that the species of Salicaceae have a total of 24 paralogous SPLs and 50 orthologous SPLs, which are the most abundant among the six species; papaya had no paralogous SPL. Among these six species, woody plants had the most abundant orthologous SPLs compared with herbaceous plants, and dicotyledons were found to have more orthologous SPLs than monocotyledons. It is noteworthy that all the Ka/Ks values for the paralogous and orthologous SPL gene pairs were less than 1.0. In transcriptome analysis, we detected an SPL gene(willow_GLEAN_10025160)that showed significant different expression in flowering tillers compared to vegetative tillers(P≤ 0.01). 【Conclusion】On the basis of bioinformatic analysis, we found that all the Ka/Ks values for the paralogous and orthologous SPL gene pairs were less than 1.0, indicating that the SPL genes in the six examined species have been undergoing purifying selection during the course of evolution, and that their functions should be relatively conserved. We also found that despite whole-genome duplication events, these angiosperms have undergone large-scale gene loss and gene expansion. Based on the results of sequence collinearity, we explored the intraspecific collinearity of SPL genes and tracked their genome duplication events during the evolutionary history of the six plants. This study provides useful information and clues for further studies of the function of SPL genes in the regulation of plant flowering.

参考文献/References:

[1] 徐妙云, 王磊. MicroRNA与植物花发育调控的研究进展[J]. 中国农业科技导报, 2011, 13(2): 9-16. DOI:10.3969/j.issn.1008-0864.2011.02.02 XU M Y, WANG L. Research progress on microRNAs role in controlling flower development[J]. Journal of Agricultural Science and Technology, 2011, 13(2): 9-16.
[2] PARK M Y, WU G, GONZALEZ-SULSER A, et al. Nuclear processing and export of microRNAs in Arabidopsis[J]. Proceedings of the National Academy of Sciences, 2005, 102(10): 3691-3696. DOI:10.1073/pnas.0405570102.
[3] FRANCO-ZORRILLA J M, VALLI A, TODESCO M, et al. Target mimicry provides a new mechanism for regulation of microRNA activity[J]. Nature Genetics, 2007, 39(8): 1033-1037. DOI:10.1038/ng2079.
[4] HUIJSER P, SCHMID M. The control of developmental phase transitions in plants[J]. Development, 2011, 138(19): 4117-4129. DOI:10.1242/dev.063511.
[5] YAMAGUCHI A, ABE M. Regulation of reproductive development by non-coding RNA in Arabidopsis: to flower or not to flower[J]. Journal of Plant Research, 2012, 125(6): 693-704. DOI:10.1007/s10265-012-0513-7.
[6] 黄赫, 徐启江. MicroRNA调控被子植物花发育的研究进展[J]. 植物生理学报, 2012, 48(10): 929-940. HUANG H, XU Q J.Progress in research of MicroRNA regulation on angiosperm flower development[J]. Plant Physiology Journal, 2012, 48(10): 929-940.
[7] SPANUDAKIS E, JACKSON S. The role of microRNAs in the control of flowering time[J]. Journal of Experimental Botany, 2014, 65(2):365-380. DOI:10.1093/jxb/ert453.
[8] YAMASAKI K, KIGAWA T, INOUE M,et al. A novel zinc-binding motif revealed by solution structures of DNA-binding domains of Arabidopsis SPL-family transcription factors[J]. Journal of Molecular Biology, 2004, 337(1): 49-63. DOI:10.1016/j.jmb.2004.01.015.
[9] 代法国, 胡宗利, 陈国平, 等. 植物特有的SPL-box基因家族的研究进展[J]. 生命科学, 2010, 22(2): 155-160. DAI F G, HU Z L, CHEN G P,et al. Progress in the plant specific SBP-box gene family[J]. Chinese Bulletin of Life Sciences, 2010, 22(2): 155-160.
[10] RHOADES M, REINHART B, LIM L,et al. Prediction of plant microRNA targets[J]. Cell, 2002, 110(4): 513-520. DOI:10.1016/S0092-8674(02)00863-2.
[11] 王沙沙. 小黑杨FT-like基因的克隆、原核表达及植物超表达、RNAi表达载体的构建[D]. 哈尔滨: 东北林业大学, 2011. WANG S S. Cloning, prokaryotic expression and transformation of plant overexpression and RNAi vector of FT-like gene of Populus xiaohei[D]. Harbin: Northeast Forestry University, 2011.
[12] FINN R D, CLEMENTS J, EDDY S R. HMMER web server: interactive sequence similarity searching[J]. Nucleic Acids Research, 2011, 39(8):29-37. DOI:10.1093/nar/gkr367.
[13] UNTE U, SORENSEN A, PESARESI P,et al. SPL8, an SPL-box gene that affects pollen sac development in Arabidopsis[J]. The Plant Cell, 2003, 15(4): 1009-1019. DOI:10.1105/tpc.010678.
[14] ALTSCHUL S, MADDEN L, SCHAFFER A,et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs[J]. Nucleic Acids Reserch, 1997, 25(17): 3389-3402. DOI:10.1093/nar/25.17.3389.
[15] BLANC G, WOLFE K. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes[J]. The Plant Cell, 2004, 16(7): 1667-1678. DOI:10.1105/tpc.021345.
[16] EDGAR R C. MUSCLE: multiple sequence alignment with high accuracy and high throughput[J]. Nucleic Acids Research, 2004, 32(5):1792-1797. DOI:10.1093/nar/gkh340.
[17] YANG Z, NIELSEN R. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models[J]. Molecular Biology and Evolution, 2000, 17(1): 32-43.
[18] KATOH K, KUMA K, MIYATA T,et al. Improvement in the accuracy of multiple sequence alignment program MAFFT[J]. Genome Informatics Series, 2005, 16(1): 22-33.
[19] KATOH K, TOH H. Recent developments in the MAFFT multiple sequence alignment program[J]. Briefings in Bioinformatics, 2008, 9(4): 286-298. DOI:10.1093/bib/bbn013.
[20] TAMURA K, PETERSON D, PETERSON N,et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Molecular Biology and Evolution, 2011, 28(10): 2731-2739. DOI:10.1093/molbev/msr121.
[21] LEE T, TANG H, WANG X,et al. PGDD: a database of gene and genome duplication in plants[J]. Nucleic Acids Research, 2013, 41(D1): 1152-1158. DOI:10.1093/nar/gks1104.
[22] WANG Y, TANG H, DEBARRY J D, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity[J]. Nucleic Acids Research, 2012, 40(7): e49. DOI:10.1093/nar/gkr1293.
[23] LIU J, YIN T, YE N, et al. Transcriptome analysis of the differentially expressed genes in the male and female shrub willows (Salix suchowensis)[J]. Plos One, 2013, 8(4): e60181. DOI:10.1371/journal.pone.0060181.
[24] CHEN Y, MAO Y, LIU H, et al. Transcriptome analysis of differentially expressed genes relevant to variegation in peach flowers[J]. PloS One, 2014, 9(3): e90842. DOI:10.1371/journal.pone.0090842.
[25] ROMUALDI C, BORTOLUZZI S, D’ALESSI F, et al. IDEG6: a web tool for detection of differentially expressed genes in multiple tag sampling experiments[J]. Physiological Genomics, 2003, 12(2): 159-162. DOI:10.1152/physiolgenomics.00096.2002
[26] YANG Z, BIELAWSKI J. Statistical methods for detecting molecular adaptation[J]. Trends in Ecology and Evolution, 2000, 15(12): 496-503. DOI:10.1016/S0169-5347(00)01994-7.
[27] BLANC G, HOKAMP K, WOLFE K. A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome[J]. Genome Research, 2003, 13(2): 137-144. DOI:10.1101/gr.751803.
[28] TANG H, WANG X, BOWERS J E, et al. Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps[J]. Genome Research, 2008, 18(12):1944-1954. DOI:10.1101/gr.080978.108.
[29] TANG H, BOWERS J E, WANG X, et al. Synteny and collinearity in plant genomes[J]. Science, 2008, 320(5875):486-8. DOI:10.1126/science.1153917.
[30] DAI X, HU Q, CAI Q, et al. The willow genome and divergent evolution from poplar after the common genome duplication[J]. Cell Research, 2014, 24(10):1274-1277. DOI:10.1038/cr.2014.83.
[31] INITIATIVE A G. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana[J]. Nature, 2000, 408(6814):796-815. DOI:10.1038/35048692.
[32] JAILLON O, AURY J M, NOEL B, et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla[J]. Nature, 2007, 449(7161):463-467. DOI:10.1038/nature06148.
[33] MING R, HOU S, FENG Y, et al. The draft genome of the transgenic tropical fruit tree papaya(Carica papaya Linnaeus)[J]. Nature, 2008, 452(7190):991-996. DOI:10.1038/nature06856.
[34] GUO L, CHEN Y, YE N, et al. Differential retention and expansion of the ancestral genes associated with the paleopolyploidies in modern rosid plants, as revealed by analysis of the extensins super-gene family[J]. BMC Genomics, 2014, 15(1): 612. DOI:10.1186/1471-2164-15-612.

相似文献/References:

[1]官民晓,刘雪梅*,张 妍,等.白桦SPL8转录因子基因的分离及转录表达分析[J].南京林业大学学报(自然科学版),2013,37(03):017.[doi:10.3969/j.issn.1000-2006.2013.03.004]
 GUAN Minxiao,LIU Xuemei*,ZHANG Yan,et al.Isolation and transcription expression analysis of SPL8 transcription factors gene of Betula platyphylla[J].Journal of Nanjing Forestry University(Natural Science Edition),2013,37(02):017.[doi:10.3969/j.issn.1000-2006.2013.03.004]
[2]马秋月,陈赢男,渠纪腾,等.簸箕柳种内杂交F1群体株高生长曲线的拟合[J].南京林业大学学报(自然科学版),2013,37(04):013.[doi:10.3969/j.issn.1000-2006.2013.04.003]
 MA Qiuyue,CHEN Yingnan,QU Jiteng,et al.Modeling and analyzing the dynamic growth for progeny in a full-sib family of Salix xuzhouenesis[J].Journal of Nanjing Forestry University(Natural Science Edition),2013,37(02):013.[doi:10.3969/j.issn.1000-2006.2013.04.003]
[3]国增超,侯 静,郭 炜,等.簸箕柳材性性状株内纵向变异的趋势分析[J].南京林业大学学报(自然科学版),2014,38(05):149.[doi:10.3969/j.issn.1000-2006.2014.05.029]
 GUO Zengchao,HOU Jing,GUO Wei,et al.Variation trends of wood property along stem in Salix suchowensis[J].Journal of Nanjing Forestry University(Natural Science Edition),2014,38(02):149.[doi:10.3969/j.issn.1000-2006.2014.05.029]
[4]田 晶,赵雪媛,谢隆聖,等.SPL转录因子调控植物花发育及其分子机制研究进展[J].南京林业大学学报(自然科学版),2018,42(03):159.[doi:10.3969/j.issn.1000-2006.201708015]
 TIAN Jing,ZHAO Xueyuan,XIE Longsheng,et al.Research advances and molecular mechanism on SPLtranscription factors in regulating plant flower development[J].Journal of Nanjing Forestry University(Natural Science Edition),2018,42(02):159.[doi:10.3969/j.issn.1000-2006.201708015]

备注/Memo

备注/Memo:
收稿日期:2016-07-19 修回日期:2016-12-20
基金项目:国家林业公益性行业科研重大项目(201304102); 国家自然科学基金项目(31500533); 江苏高校优势学科建设工程资助项目(PAPD)
第一作者:冯凯(kaifeng@njfu.edu.cn)。*通信作者:李淑娴(shuxianli@njfu.edu.cn), 教授。
引文格式:冯凯, 侯静, 戴晓港,等. 簸箕柳SPL基因家族分析[J]. 南京林业大学学报(自然科学版),2017,41(2):55-62.
更新日期/Last Update: 2017-03-23