[1]李兰海,刘 翔,朱咏莉*.垦殖对伊犁河谷湿地土壤可溶性有机氮含量的影响[J].南京林业大学学报(自然科学版),2017,41(03):001-6.[doi:10.3969/j.issn.1000-2006.2017.03.001]
 LI Lanhai,LIU Xiang,ZHU Yongli*.Effects of reclamation on soil soluble organic nitrogen contents in wetlands of the Ili River Valley[J].Journal of Nanjing Forestry University(Natural Science Edition),2017,41(03):001-6.[doi:10.3969/j.issn.1000-2006.2017.03.001]
点击复制

垦殖对伊犁河谷湿地土壤可溶性有机氮含量的影响/HTML
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
41
期数:
2017年03期
页码:
001-6
栏目:
专题报道
出版日期:
2017-05-31

文章信息/Info

Title:
Effects of reclamation on soil soluble organic nitrogen contents in wetlands of the Ili River Valley
文章编号:
1000-2006(2017)03-0001-06
作者:
李兰海1刘 翔12朱咏莉3*
1.中国科学院新疆生态与地理研究所,荒漠与绿洲生态国家重点实验室,新疆 乌鲁木齐 830011;
2.中国科学院大学,北京 100049;
3. 南方现代林业协同创新中心,南京林业大学生物与环境学院,江苏 南京 210037
Author(s):
LI Lanhai1 LIU Xiang12 ZHU Yongli3*
1. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Co-Innovation Center of the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
关键词:
河流湿地 土壤可溶性有机氮(SON) 垦殖 伊犁河谷
Keywords:
riverine wetlands soil soluble organic nitrogen(SON) reclamation Ili River Valley
分类号:
S154
DOI:
10.3969/j.issn.1000-2006.2017.03.001
摘要:
【目的】研究垦殖对伊犁河谷湿地土壤可溶性有机氮(SON)的影响,为该区湿地的开发保护和氮素调控提供科学依据。【方法】以伊犁河谷的芦苇湿地及其垦殖而成的稻田为研究对象,分层采集0~100 cm的土壤样品,分析垦殖对垂直方向上土壤SON含量的影响,并探求SON与土壤理化性质和其他氮组分之间的关系。【结果】在0~100 cm土壤深度内,芦苇湿地和稻田土壤的SON含量占土壤可溶性总氮(TSN)含量的58.9%~74.1%,表明SON是该区域土壤可溶性氮素的主要组成部分; 土壤SON含量在垦殖后降低了16.7%~40.5%,在≥20~60 cm土层表现为显著降低,表明垦殖对土壤可溶性有机氮的影响不仅限于表层土壤,这缘于湿地和稻田土壤的高含水率使得土壤SON在垂直方向上的移动性较强; 湿地土壤的有机碳和全氮在垦殖后大幅减少,其中垦殖前的含量分别是垦殖后的2.9~5.9倍和2.0~6.0倍。总体上讲,土壤碳氮比、微生物量氮、铵态氮和硝态氮在开垦前后的变化不大,只有0~20 cm土层的微生物量氮和硝态氮在垦殖后显著降低(P < 0.05); 土壤SON与土壤有机碳和全氮表现出显著的相关性,说明垦殖后土壤有机质水平的降低是SON含量下降的主要原因。【结论】土壤SON是伊犁河谷湿地土壤可溶性氮素的主要形态,但其含量在湿地垦殖为稻田后表现出减少的趋势。
Abstract:
【Objective】 To investigate the effect of reclamation on soil soluble organic nitrogen(SON)contents in wetland of the Ili River Valley, which could provide basis for the exploitation, protection and nitrogen regulation of wetlands in this area. 【Method】 Soil samples of 0-100 cm were collected at different depths from a reed(Phragmites australis(Cav.)Trin. ex Steud.)wetland and a paddy field which converted from this wetland to study the effect of reclamation on profile distribution of soil SON content, and to analyze the relationships between soil SON and physicochemical properties/other nitrogen fractions. 【Result】 Soil SON contents of reed wetland and paddy field accounted for 58.9%-74.1% of soil total soluble nitrogen(TSN)contents in the 0-100 cm soil layers, indicating that SON was the main component of soil soluble nitrogen in the study area. Soil SON contents decreased by 16.7%-40.5% after reclamations and the decreases were significant in the ≥20-60 cm soil layers. These results indicated that the effect of reclamation on soil SON content was not limited to topsoil, possibly due to that the high soil water contents of wetland and paddy field promoted the mobility of soil SON. Soil organic carbon content and total nitrogen content decreased considerably after reclamation, and the contents before reclamation were 2.9-5.9 times and 2.0-6.0 times higher than those after reclamation, respectively. In general, the ratio of carbon to nitrogen, microbial biomass nitrogen, ammonium nitrogen and nitrate nitrogen showed little response to the reclamation, only the contents of microbial biomass nitrogen and nitrate nitrogen in the 0-20 cm soil layer was significantly(P<0.05)decreased by reclamation. The significant(P<0.01)correlations between soil SON and organic carbon/total nitrogen suggested that the decreas of soil organic matter content after reclamation was the main reason for the decreased soil SON contents. 【Conclusion】 Soil SON is the major part of soil soluble nitrogen in the Ili River Valley, but its content showed a decreasing tendency after reclaiming into paddy field.

参考文献/References:

[1] 张彪, 高人, 杨玉盛, 等. 万木林自然保护区不同林分土壤可溶性有机氮含量[J]. 应用生态学报, 2010, 21(7):1635-1640. ZHANG B, GAO R, YANG Y S, et al. Soil soluble organic nitrogen content in different forest stands in Wanmulin Nature Reserve [J]. Chinese Journal of Applied Ecology, 2010, 21(7): 1635-1640.
[2] HOLST J, BRACKIN R, ROBINSON N, et al. Soluble inorganic and organic nitrogen in two Australian soils under sugarcane cultivation [J]. Agriculture, Ecosystems & Environment, 2012, 155: 16-26. DOI: 10.1016/j.agee.2012.03.015.
[3] BURTON J, CHEN C, XU Z, et al.Soluble organic nitrogen pools in adjacent native and plantation forests of subtropical Australia [J]. Soil Biology and Biochemistry, 2007, 39(11): 2723-2734. DOI: 10.1016/j.soilbio.2007.05.021.
[4] 王洁, 杨曦, 朱兆洲, 等. 青藏高原土壤可溶性氮组成特征[J]. 生态学杂志, 2015, 34(6):1660-1666. WANG J, YANG X, ZHU Z Z, et al. Characteristics of soluble nitrogen in soils on the Tibetan Plateau, China [J]. Chinese Journal of Ecology, 2015, 34(6): 1660-1666.
[5] 周碧青, 陈成榕, 张黎明, 等. 茶树品种对亚热带茶园土壤可溶性有机氮组成的影响[J]. 农业环境科学学报, 2015, 34(6):1158-1165. DOI: 10.11654/jaes.2015.06.020. ZHOU B Q, CHEN C R, ZHANG L M, et al. Effects of tea genotypes on soil soluble organic nitrogen compositions in subtropical tea plantations [J]. Journal of Agro-Environment Science, 2015, 34(6): 1158-1165.
[6] SHAO H B, CUI B S, BAI J H. Wetland ecology in China [J]. Clean Soil, Air, Water, 2012, 40(10): 1011-1014. DOI: 10.1002/clen.201270002.
[7] MOSEMAN-VALTIERRA S, GONZALEZ R, KROEGER K D, et al. Short-term nitrogen additions can shift a coastal wetland from a sink to a source of N2O [J]. Atmospheric Environment, 2011, 45(26): 4390-4397. DOI: 10.1016/j.atmosenv.2011.05.046.
[8] 韩建刚, 曹雪. 典型滨海湿地干湿交替过程氮素动态的模拟研究[J]. 环境科学, 2013, 34(6):2383-2389. HAN J G, CAO X. Effects of drying-rewetting alternation on nitrogen dynamics in a typical coastal wetland: asimulation study [J]. Environmental Science, 2013, 34(6): 2383-2389.
[9] BAI J, ZHAO Q, LU Q, et al. Land-use effects on soil carbon and nitrogen in a typical plateau lakeshore wetland of China [J]. Archives of Agronomy and Soil Science, 2014, 60(6): 817-825. DOI:10.1080/03650340.2013.839870.
[10] WANG W, SARDANS J, ZENG C, et al. Responses of soil nutrient concentrations and stoichiometry to different human land uses in a subtropical tidal wetland [J]. Geoderma, 2014, 232: 459-470. DOI:10.1016/j.geoderma.2014.06.004.
[11] 黄靖宇, 宋长春, 宋艳宇, 等. 湿地垦殖对土壤微生物量及土壤溶解有机碳、氮的影响[J]. 环境科学, 2008, 29(5):1380-1387. DOI: 10.3321/j.issn:0250-3301.2008.05.040. HUANG J Y, SONG C C, SONG Y Y, et al. Influence of freshwater marsh tillage on microbial biomass and dissolved organic carbon and nitrogen [J]. Environmental Science, 2008, 29(5): 1380-1387.
[12] 霍莉莉, 邹元春, 郭佳伟, 等. 垦殖对湿地土壤有机碳垂直分布及可溶性有机碳截留的影响[J]. 环境科学, 2013, 34(1):283-287. HUO L L, ZOU Y C, GUO J W, et al. Effect of reclamation on the vertical distribution of SOC and retention of DOC [J]. Environmental Science, 2013, 34(1): 283-287.
[13] 加尔肯居马肯·爱特, 米利根. 新疆伊犁河流域湿地保护与管理[J]. 湿地科学与管理, 2014, 10(3):43-45. DOI: 10.3969/j.issn.1673-3290.2014.03.11. JARKHENJUMAKHEN A, MI L G. Conservation and management of wetland of Ili River basin in Xinjiang [J]. Wetland Science & Management, 2014, 10(3): 43-45.
[14] MA J, LI L H, GUO L P, et al. Variation in soil nutrients in grasslands along the Kunes River in Xinjiang, China [J]. Chemistry and Ecology, 2015, 31(2): 111-122. DOI:10.1080/02757540.2014.917170.
[15] 鲁如坤. 土壤农业化学分析方法 [M]. 北京:中国农业科技出版社, 1999.
[16] JONES D L, WILLETT V B. Experimental evaluation of methods to quantify dissolved organic nitrogen(DON)and dissolved organic carbon(DOC)in soil [J]. Soil Biology and Biochemistry, 2006, 38(5): 991-999. DOI: 10.1016/j.soilbio.2005.08.012.
[17] NUNAN N, MORGAN M A, HERLIHY M. Ultraviolet absorbance(280 nm)of compounds released from soil during chloroform fumigation as an estimate of the microbial biomass [J]. Soil Biology and Biochemistry, 1998, 30(12): 1599-1603. DOI: 10.1016/s0038-0717(97)00226-5.
[18] WILLETT V B, GREEN J J, MACDONALD A J, et al. Impact of land use on soluble organic nitrogen in soil [J]. Water, Air, & Soil Pollution: Focus, 2005, 4(6): 53-60. DOI: 10.1007/s11267-005-3013-0.
[19] CHRISTOU M, AVRAMIDES E J, ROBERTS J P, et al. Dissolved organic nitrogen in contrasting agricultural ecosystems [J]. Soil Biology and Biochemistry, 2005, 37(8): 1560-1563. DOI:10.1016/j.soilbio.2005.01.025.
[20] 李成芳, 曹凑贵, 汪金平, 等. 稻鸭、稻鱼共作生态系统土壤可溶性有机N的动态和损失[J]. 生态学报, 2009, 29(5):2541-2550. LI C F, CAO C G, WANG J P, et al. Dynamics of soil soluble organic N in rice-duck and rice-fish ecosystems [J]. Acta Ecologica Sinica, 2009, 29(5): 2541-2550.
[21] 杨玉盛, 郭剑芬, 陈光水, 等. 森林生态系统DOM的来源、特性及流动[J]. 生态学报, 2003, 23(3):547-558. DOI:10.3321/j.issn:1000-0933.2003.03.019. YANG Y S, GUO J F, CHEN G S, et al. Origin, property and flux of dissolved organic matter in forest ecosystems [J]. Acta Ecologica Sinica, 2003, 23(3): 547-558.
[22] KALBITZ K, SOLINGER S, PARK J H, et al. Controls on the dynamics of dissolved organic matter in soils: a review [J]. Soil Science, 2000, 165(4): 277-304.
[23] 徐明喜, 张银龙, 陆珺, 等. 芦苇收割对湖滨湿地土壤酶活性的影响[J]. 南京林业大学学报(自然科学版), 2011, 35(6):143-146. DOI:10.3969/j.issn.1000-2006.2011.06.029. XU M X, ZHANG Y L, LU J, et al.Effect of reed cutting on soil enzyme activities in riparian zone [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2011, 35(6): 143-146.
[24] HUANG M, LIANG T, OUYANG Z, et al. Leaching losses of nitrate nitrogen and dissolved organic nitrogen from a yearly two crops system, wheat-maize, under monsoon situations [J]. Nutrient Cycling in Agroecosystems, 2011, 91(1): 77-89. DOI:10.1007/s10705-011-9447-z.

备注/Memo

备注/Memo:
收稿日期:2016-02-13 修回日期:2017-04-01
基金项目:国家自然科学基金项目(41471191); 江苏省“青蓝工程”资助项目(苏教师[2016] 15号); 江苏高校优势学科建设工程资助项目(PAPD)
第一作者:李兰海(lilh@ms.xjb.ac.cn),研究员,主要负责试验设计、文字修改。刘翔(liuxiang12@mail.ucas.ac.cn),主要负责数据处理、分析与文章组织。*通信作者:朱咏莉(lyly1262011@126.com),研究员。
引文格式:李兰海,刘翔,朱咏莉. 垦殖对伊犁河谷湿地土壤可溶性有机氮含量的影响[J]. 南京林业大学学报(自然科学版),2017,41(3):1-6.
更新日期/Last Update: 2017-05-20