[1]刘 翔,韩建刚,李兰海*,等.生物炭添加对土壤冻融过程中温室气体排放的影响[J].南京林业大学学报(自然科学版),2017,41(03):015-21.[doi:10.3969/j.issn.1000-2006.2017.03.003]
 LIU Xiang,HAN Jiangang,LI Lanhai*,et al.Impacts of biochar addition on greenhouse gas fluxes from soils subjected to freeze-thaw process[J].Journal of Nanjing Forestry University(Natural Science Edition),2017,41(03):015-21.[doi:10.3969/j.issn.1000-2006.2017.03.003]





Impacts of biochar addition on greenhouse gas fluxes from soils subjected to freeze-thaw process
刘 翔12韩建刚3李兰海1*朱咏莉3*
1.中国科学院新疆生态与地理研究所,荒漠与绿洲生态国家重点实验室,新疆 乌鲁木齐 830011;
2.中国科学院大学,北京 100049;
3.南方现代林业协同创新中心,南京林业大学生物与环境学院,江苏 南京 210037
LIU Xiang12 HAN Jiangang3 LI Lanhai1* ZHU Yongli3*
1. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
生物炭 土壤冻融过程 温室气体 伊犁河谷
biochar soil subjected to freeze-thaw process greenhouse gas Ili River Valley
S154.2; X171.1
【目的】研究模拟生物炭添加对土壤冻融过程中二氧化碳(CO2)、甲烷(CH4)和氧化亚氮(N2O)排放的影响,为冻融期土壤温室气体的减排提供参考。【方法】以伊犁河谷典型农田为研究对象,野外采集原状土柱,并在室内模拟不同幅度的冻融过程(+5 ℃、-5 ℃~ +5 ℃和-10 ℃ ~ +10 ℃),探求冻融过程中土壤CO2、CH4和N2O排放对生物炭添加(0、20和40 t/hm2)的响应特征。【结果】与不添加生物炭的处理相比,添加生物炭会使冻融过程中的土壤CO2排放量提高1.1~1.4倍,但该影响远小于冻融作用对土壤CO2排放的促进作用(为CK的1.5~3.2倍); 虽然冻融作用未显著(P > 0.05)影响土壤CH4的累积排放量,但生物炭的添加显著(P < 0.05)促进了45.5%~81.8%的CH4吸收量; 冻融作用使土壤N2O的累积排放量提高了1.3~3.0倍,生物炭降低了冻融过程中10.2%~30.9%的土壤N2O排放量,但在多数情况下这种减小并不显著(P > 0.05)。【结论】模拟生物炭添加会增加土壤冻融过程中CO2的排放,也会促进CH4的吸收和N2O的减排。
【Objective】 Investigating the impacts of biochar addition on carbon dioxide(CO2), methane(CH4)and nitrous oxide(N2O)fluxes from soils subjected to freeze-thaw process could provide basis for the mitigation of soil greenhouse gas emissions during freeze-thaw period. 【Method】 Intact soil cores were collected from a cropland in the Ili River Valley and then subjected to freeze-thaw processes with different freeze-thaw amplitudes(+5 ℃, -5 ℃ - +5 ℃ and -10 ℃ - +10 ℃)in the laboratory, to explore the responses of soil CO2, CH4 and N2O fluxes to biochar addition(0, 20 and 40 t/hm2)during freeze-thaw process. 【Result】 CO2 fluxes from soils with biochar additions were 1.1-1.4 times higher than those from soils without adding biochar. However, such increases were lower compared to the promoting effects of freeze-thaw on soil CO2 flux(1.5-3.2 times). Although freeze-thaw process did not significantly(P > 0.05)affect the cumulative flux of soil CH4, biochar additions significantly(P < 0.05)increased soil CH4 flux by approximately 45.5%-81.8%. Biochar decreased soil N2O flux by 10.2%-30.9% during freeze-thaw process, but such decreases were not significant(P > 0.05)in most cases. 【Conclusion】 Biochar addition may increase the emission of soil CO2, while promote the uptake of soil CH4 and the mitigation of soil N2O during freeze-thaw process.


[1] 王娇月, 宋长春, 王宪伟, 等. 冻融作用对土壤有机碳库及微生物的影响研究进展[J]. 冰川冻土, 2011, 33(2): 442-452. WANG J Y, SONG C C, WANG X W, et al. Progress in the study of effect of freeze-thaw processes on the organic carbon pool and microorganisms in soils [J]. Journal of Glaciology and Geocryology, 2011, 33(2): 442-452.
[2] SCHUUR E A G, MCGUIRE A D, SCHÄDEL C, et al. Climate change and the permafrost carbon feedback [J]. Nature, 2015, 520(7546): 171-179. DOI: 10.1038/nature14338.
[3] KOVEN C D, RINGEVAL B, FRIEDLINGSTEIN P, et al. Permafrost carbon-climate feedbacks accelerate global warming [J]. Proceedings of the National Academy of Sciences, 2011, 108(36): 14769-14774. DOI: 10.1073/pnas.1103910108.
[4] KÖHLER P, KNORR G, BARD E. Permafrost thawing as a possible source of abrupt carbon release at the onset of the Bølling/Allerød [J]. Nature Communications, 2014, 5: 5520. DOI: 10.1038/ncomms6520.
[5] ABBOTT B W, JONES J B. Permafrost collapse alters soil carbon stocks, respiration, CH4 and N2O in upland tundra [J]. Global Change Biology, 2015, 21(12): 4570-4587. DOI: 10.1111/gcb.13069.
[6] SCHAEFER K, ZHANG T, BRUHWILER L, et al.Amount and timing of permafrost carbon release in response to climate warming [J]. Tellus B, 2011, 63(2): 165-180. DOI: 10.1111/j.1600-0889.2011.00527.x.
[7] 陈哲, 韩瑞芸, 杨世琦, 等. 东北季节性冻融农田土壤 CO2, CH4, N2O 通量特征研究[J]. 农业环境科学学报, 2016, 35(2): 387-395. CHEN Z, HAN R Y, YANG S Q, et al. Fluxes of CO2, CH4 and N2O from seasonal freeze-thaw arable soils in northeast China [J]. Journal of Agro-Environmental Science, 2016, 35(2): 387-395.
[8] KIM D G, VARGAS R, BOND-LAMBERTY B, et al. Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research [J]. Biogeosciences, 2012, 9(7): 2459-2483. DOI: 10.5194/bg-9-2459-2012.
[9] WOLF B, ZHENG X, BRÜGGEMANN N, et al. Grazing-induced reduction of natural nitrous oxide release from continental steppe [J]. Nature, 2010, 464(7290): 881-884. DOI: 10.1038/nature08931.
[10] NIELSEN C B, GROFFMAN P M, HAMBURG S P, et al. Freezing effects on carbon and nitrogen cycling in northern hardwood forest soils [J]. Soil Science Society of America Journal, 2001, 65(6): 1723-1730. DOI: 10.2136/sssaj2001.1723.
[11] LEHMANN J D, JOSEPH S. Biochar for environmental management: science and technology [M]. Routledge: Earthscan, 2012.
[12] SOHI S P, KRULL E, LOPEZ-CAPEL E, et al. A review of biochar and its use and function in soil [J]. Advances in Agronomy, 2010, 105: 47-82. DOI: 10.1016/s0065-2113(10)05002-9.
[13] ZHANG D, PAN G, WU G, et al. Biochar helps enhance maize productivity and reduce greenhouse gas emissions under balanced fertilization in a rainfed low fertility inceptisol [J]. Chemosphere, 2016, 142: 106-113. DOI: 10.1016/j.chemosphere.2015.04.088.
[14] 李露, 周自强, 潘晓健, 等. 氮肥与生物炭施用对稻麦轮作系统甲烷和氧化亚氮排放的影响[J]. 植物营养与肥料学报, 2015, 21(5): 1095-1103. DOI: 10. 11674/zwyf. 2015. 0501. LI L, ZHOU Z Q, PAN X J, et al. Combined effects of nitrogen fertilization and biochar incorporation on methane and nitrous oxide emissions from paddy fields in rice-wheat annual rotation system [J]. Journal of Plant Nutrition and Fertilizer,2015, 21(5): 1095-1103.
[15] 普宗朝, 张山清, 徐文修, 等. 气候变化对伊犁河谷冬小麦产量的影响[J]. 中国农学通报, 2014, 30(15): 173-182. PU Z C, ZHANG S Q, XU W X, et al. Impact of climate change to winter wheat yield in Yili River Valley of Xinjiang [J]. Chinese Agricultural Science Bulletin, 2014, 30(15): 173-182.
[16] 詹红霞, 邱辉. 1962-2007 年伊犁河谷冻土分析[J]. 沙漠与绿洲气象, 2009, 3(6): 34-36. DOI: 10.3969/j.issn.1002-0799.2009.06.008. ZHAN H X, QIU H. Analyze on frozen soil in Yili Valley during 1962-2007 [J]. Desert and Oasis Meteorology,2009, 3(6): 34-36.
[17] MA J, LI L H, GUO L P, et al. Variation in soil nutrients in grasslands along the Kunes River in Xinjiang, China [J]. Chemistry and Ecology, 2015, 31(2): 111-122. DOI:10.1080/02757540.2014.917170.
[18] GUI D, LEI J, ZENG F, et al. Ordination as a tool to characterize soil particle size distribution, applied to an elevation gradient at the north slope of the Middle Kunlun Mountains [J]. Geoderma, 2010, 158(3): 352-358. DOI:10.1016/j.geoderma.2010.06.002.
[19] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999.
[20] YAO Z, ZHENG X, XIE B,et al. Tillage and crop residue management significantly affects N-trace gas emissions during the non-rice season of a subtropical rice-wheat rotation [J]. Soil Biology and Biochemistry, 2009, 41(10):2131-2140. DOI:10.1016/j.soilbio.2009.07.025.
[21] 伍星, 刘慧峰, 张令能, 等. 雪被和土壤水分对典型半干旱草原土壤冻融过程中CO2和N2O排放的影响[J]. 生态学报, 2014, 34(19): 5484-5493. DOI: 10.5846/stxb201301150097. WU X, LIU H F, ZHANG L N, et al. Effects of snow cover and soil moisture on CO2 and N2O fluxes from typical semi-arid grassland soil subjected to freeze-thaw cycles [J]. Acta Ecologica Sinica, 2014, 34(19): 5484-5493.
[22] WANG J, SONG C, HOU A, et al. CO2 emissions from soils of different depths of a permafrost peatland, Northeast China: response to simulated freezing-thawing cycles [J]. Journal of Plant Nutrition and Soil Science, 2014, 177(4): 524-531. DOI:10.1002/jpln.201300309.
[23] ZHANG A, LIU Y, PAN G, et al. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain [J]. Plant and Soil, 2012, 351(1): 263-275. DOI: 10.1007/s11104-011-0957-x.
[24] CROSS A, SOHI S P. The priming potential of biochar products in relation to labile carbon contents and soil organic matter status [J]. Soil Biology and Biochemistry, 2011, 43(10): 2127-2134. DOI: 10.1016/j.soilbio.2011.06.016.
[25] 何飞飞, 荣湘民, 梁运姗, 等. 生物炭对红壤菜田土理化性质和N2O、CO2排放的影响[J]. 农业环境科学学报, 2013, 32(9): 1893-1900. HE F F, RONG X M, LIANG Y S, et al. Effects of biochar on soil physichemical properties and N2O, CO2 emissions from vegetable-planting red soil [J]. Journal of Agro-Environmental Science, 2013, 32(9): 1893-1900.
[26] 胡雲飞, 李荣林, 杨亦扬. 生物炭对茶园土壤CO2和N2O排放量及微生物特性的影响[J]. 应用生态学报, 2015, 26(7): 1954-1960. HU Y F, LI R L, YANG Y Y. Effects of biochar on CO2 and N2O emissions and microbial properties of tea garden soils [J]. Chinese Journal of Applied Ecology, 2015, 26(7): 1954-1960.
[27] 贾俊香, 熊正琴. 秸秆生物炭对菜地N2O, CO2与CH4排放及土壤化学性质的影响[J]. 生态与农村环境学报, 2016, 32(2): 283-288. DOI: 10.11934/j.issn.1673-4831.2016.02.017. JIA J X, XIONG Z Q. Impact of application of maize stalk-derived biochar on soil properties of and N2O, CO2 and CH4 emissions from vegetable fields [J]. Journal of Ecology and Rural Environment, 2016, 32(2): 283-288.
[28] LUO Y, DURENKAMP M, DE NOBILI M, et al. Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH [J]. Soil Biology and Biochemistry, 2011, 43(11): 2304-2314. DOI:10.1016/j.soilbio.2011.07.020.
[29] CASTALDI S, RIONDINO M, BARONTI S, et al. Impact of biochar application to a Mediterranean wheat crop on soil microbial activity and greenhouse gas fluxes [J]. Chemosphere, 2011, 85(9): 1464-1471. DOI:10.1016/j.chemosphere.2011.08.031.
[30] KARHU K, MATTILA T, BERGSTRÖM I, et al. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity-results from a short-term pilot field study[J]. Agriculture, Ecosystems & Environment, 2011, 140(1): 309-313. DOI:10.1016/j.agee.2010.12.005.
[31] VAN ZWIETEN L, SINGH B, JOSEPH S, et al. Biochar and emissions of non-CO2 greenhouse gases from soil [C]// Biochar for Environmental Management Science and Technology. London: Earthscan, 2009: 227-249.
[32] 许欣, 陈晨, 熊正琴. 生物炭与氮肥对稻田甲烷产生与氧化菌数量和潜在活性的影响[J]. 土壤学报, 2016, 53(6): 1517-1527. DOI: 10.11766/trxb201604210087. XU X, CHEN C, XIONG Z Q. Effects of biochar and nitrogen fertilizer amendment on abundance and potential activity of methanotrophs and methanogens in paddy field [J]. Acta Pedologica Sinica, 2016, 53(6): 1517-1527.
[33] XIE Z, XU Y, LIU G, et al. Impact of biochar application on nitrogen nutrition of rice, greenhouse-gas emissions and soil organic carbon dynamics in two paddy soils of China [J]. Plant and Soil, 2013, 370(1): 527-540. DOI: 10.1007/s11104-013-1636-x.
[34] ZHANG A, CUI L, PAN G, et al. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China [J]. Agriculture, Ecosystems & Environment, 2010, 139(4): 469-475. DOI:10.1016/j.agee.2010.09.003.
[35] KETTUNEN R, SAARNIO S. Biochar can restrict N2O emissions and the risk of nitrogen leaching from an agricultural soil during the freeze-thaw period [J]. Agricultural and Food Science, 2013, 22(4): 373-379.
[36] LIU X, WANG Q, QI Z,et al. Response of N2O emissions to biochar amendment in a cultivated sandy loam soil during freeze-thaw cycles [J]. Scientific Reports, 2016, 6: 35411. DOI: 10.1038/srep35411.


 XU Wenhuan,DENG Fangfang,FANG Shuiyuan,et al.Effect of biochar on soil microbial biomass and the diversity of carbon source metabolism in poplar plantation[J].Journal of Nanjing Forestry University(Natural Science Edition),2016,40(03):014.[doi:10.3969/j.issn.1000-2006.2016.05.003]
 ZHOU Zhidong,BU Xiaoli,WU Yongbo,et al.Research advances in biochar effects on soil microbial properties[J].Journal of Nanjing Forestry University(Natural Science Edition),2016,40(03):001.[doi:10.3969/j.issn.1000-2006.2016.06.001]


收稿日期:2017-02-13 修回日期:2017-04-11
基金项目:国家自然科学基金项目(41471191,41375149); 江苏省“青蓝工程”资助项目(苏教师[2016]15号); 江苏高校优势学科建设工程资助项目(PAPD)
第一作者:刘翔(liuxiang12@mails.ucas.ac.cn)。*通信作者:李兰海(lilh@ms.xjb.ac.cn),研究员,主要负责试验的设计; 朱咏莉(lyly1262011@126.com),研究员,主要负责数据的处理和分析。
引文格式:刘翔,韩建刚,李兰海,等. 生物炭添加对土壤冻融过程中温室气体排放的影响[J]. 南京林业大学学报(自然科学版),2017,41(3):15-21.
更新日期/Last Update: 2017-05-20