[1]张如义,胡红玲*,吕向阳,等.香樟凋落叶分解对几种园地作物抗性生理和土壤氮组分的影响[J].南京林业大学学报(自然科学版),2017,41(03):029-36.[doi:10.3969/j.issn.1000-2006.2017.03.005]
 ZHANG Ruyi,HU Hongling*,LYU Xiangyang,et al.Effects of decomposingleaf litter of Cinnamomum camphora on the resistance physiology of three intercropping crops and activity of the organic nitrogen fraction[J].Journal of Nanjing Forestry University(Natural Science Edition),2017,41(03):029-36.[doi:10.3969/j.issn.1000-2006.2017.03.005]
点击复制

香樟凋落叶分解对几种园地作物抗性生理和土壤氮组分的影响/HTML
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
41
期数:
2017年03期
页码:
029-36
栏目:
研究论文
出版日期:
2017-05-31

文章信息/Info

Title:
Effects of decomposingleaf litter of Cinnamomum camphora on the resistance physiology of three intercropping crops and activity of the organic nitrogen fraction
文章编号:
1000-2006(2017)03-0029-08
作者:
张如义12胡红玲1*吕向阳2陈 洪3杨珊珊1胡庭兴1
1.四川农业大学林学院,四川 成都 611130;
2.内江市农业科学院,四川 内江 641000;
3.泸州市林业科学研究所,四川 泸州 646000
Author(s):
ZHANG Ruyi12HU Hongling1* LYU Xiangyang2CHEN Hong3 YANG Shanshan1 HU Tingxing1
1.College of Forestry, Sichuan Agricultural University, Chengdu 611130,China;
2.Neijiang City Academy of Agricultural Sciences, Neijiang 641000,China;
3.Luzhou Forest Scientific Research Institute, Luzhou 646000,China
关键词:
香樟 凋落叶分解 抗性生理 氮组分 化感作用
Keywords:
camphor(Cinnamomum camphora) leaf litter decomposition resistance physiology organic nitrogen fraction allelopathy
分类号:
Q945.7; S792.23
DOI:
10.3969/j.issn.1000-2006.2017.03.005
摘要:
【目的】探讨香樟(Cinnamomum camphora)凋落叶添加到土壤中对小白菜(Brassica chinensis)、莴笋(Lactuca sativa)、茄子(Solanum melongena)生长和抗性生理的影响以及土壤矿质化氮的动态响应。【方法】采用盆栽试验,以单位面积香樟叶年凋落量作为凋落叶的基本添加量,设不添加凋落叶的对照(CK)和3个凋落叶添加水平,即A1(25 g/盆)、A2(50 g/盆)、A3(100 g/盆),每处理重复5次,处理3种作物共计60盆。处理后,定期对植株生长指标(株高、地径)和抗性生理指标(超氧化物歧化酶、过氧化氢酶、过氧化物酶)和作物所生长土壤的硝态氮、铵态氮含量进行测定。【结果】香樟凋落叶分解对3种作物的地径、株高均有明显的抑制作用,且有随凋落叶添加量的增加而增强并随分解时间的延长而逐渐减弱的效应; 香樟凋落叶分解初期(20~40 d),各水平处理均显著地促进了叶片超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性,抑制了过氧化物酶(POD)活性。凋落叶分解到80 d时,各处理CAT、POD、SOD活性的差异明显缩小; 加入不同量的香樟凋落叶在一定时间(30~50 d)内大幅降低了土壤矿化氮(硝态氮和铵态氮)含量; 不同作物对香樟凋落叶化感作用的敏感程度不同,莴笋最为敏感,其次是小白菜,茄子的耐受性最强,相对更适宜在香樟林间或林缘种植。【结论】香樟凋落叶分解可能降低了土壤氮素的有效性,并对作物造成活性氧伤害,最终限制其生长发育。
Abstract:
【Objectives】A pot experiment was conducted to investigate the allelopathic effect of decomposing leaf litter of camphor(Cinnamomum camphora)on the growth and resistance physiology of three recipient crops: cabbage(Brassica chinensis), lettuce(Lactuca sativa)and eggplant(Solanum melongena). 【Methods】Through potted trial, the annual amount of leaf litter per unit area was uesd as the basic amount of litter in this experiment, four levels of leaf litter addition were applied to the soil(namely A1 (25 g/pot), A2 (50 g/pot), A3(100 g/pot)and CK(no leaf litter added).Repeated five times for each treatment, the total amount of three crops were 60 pots. After the treatment, on a regular basis, the plant growth index(height and diameter)and resistant physiological index(superoxide dismutase, catalase and peroxidase)and the contents of soil nitrate and ammonium nitrogenfor crop growth were measured.【Results】The decomposing camphor leaf litter showed inhibiting effect on ground diameter and height of the three recipient crops. The inhibition effect on the recipient crops was enhanced with the increment of leaf litter, but with the extension of decomposition time the inhibition effect tended to weaken and even showed the promotion effect on recipient crops; At the early stage(20-40 d)of decomposition of leaf litter, the activities of superoxide dismutase(SOD)and catalase(CAT)were inhibited with the increase of leaf litter addition, and the activity of peroxidase(POD)was increased. After 80 d of decomposition, the activity difference of CAT, SOD and POD were significantly decreased. Different addition during a certain period(30-50 d)remarkably reduced the content of soil mineral nitrogen(nitrate nitrogen and ammonium nitrogen). The sensitive levels of different recipient plants to the allelopathic inhibition of decomposing camphor leaf litter were different. The inhibition effect on lettuce was the strongest, while the inhibition effect on eggplant was the weakest. 【Conclusions】With the extension of decomposition time the inhibition effect tended to weaken. Based on the results above, we concluded that the decomposing camphor leaf litter affected the growth of recipient crops directly or indirectly by releasing allelochemicals, thus the vegetative growth of recipient crops was limited, and accordingly the accumulation of biomass was decreased.

参考文献/References:

[1] 毛龙生. 观赏树木栽培大全[M]. 北京: 中国农业出版社, 2003:134-144, 211-212.
[2] 郭金耀, 杨晓玲. 香樟叶提取液的除草与抑菌活性[J]. 作物杂志, 2012(1): 58-61. DOI:10.3969/j.issn.1001-7283.2012.01.014. GUO J Y, YANG X L. Herbicide and antibacterial activity of the extracts from leaves of Cinnamomum camphora[J]. Crops, 2012(1): 58-61.
[3] 王琛, 廖琰明, 吴坚, 等. 香樟林下几种冷季型草坪草的适应性及其影响因子分析[J]. 上海交通大学学报(农业科学版), 2010, 28(1): 1-8. DOI:10.3969/j.issn.1671-9964.2010.01.001. WANG C, LIAO Y M, WU J, et al. Turfgrass evaluation and analysis of factors inhibiting turfgrass growth under camphor trees[J]. Journal of Shanghai Jiaotong University(Agricultural Science), 2010, 28(1): 1-8.
[4] OKAMOTO Y, YAMAJI K, KOBAYASHI K. Allelopathic activity of camphor released from camphor tree(Cinnamomum camphora)[J]. Allelopathy Journal, 2011, 27(1):123-132.
[5] 孔垂华, 胡飞. 植物化感(相生相克)作用及其应用[M]. 北京:中国农业出版社, 2001.
[6] 吴秀华, 胡庭兴, 杨万勤, 等. 巨桉凋落叶分解对菊苣生长及光合特性的影响[J]. 应用生态学报, 2012, 23(1): 1-8. DOI:10.13287/j.1001-9332.2012.0001. WU X H, HU T X, YANG W Q, et al. Effects of Eucalyptus grandis leaf litter decomposition on the growth and photosynthetic characteristics of Cichorium intybus[J]. Chinese Journal of Applied Ecology, 2012, 23(1): 1-8.
[7] 陈洪, 胡庭兴, 杨万勤, 等. 巨桉凋落叶分解初期对老芒麦幼苗生长和抗性生理的影响[J]. 草业学报, 2011, 20(5):57-65. CHEN H, HU T X, YANG W Q, et al. Effects of Eucalyptus grandis leaf litter on growth ang resistance physiology of Elymus sibiricus in the initial decomposition process of litter in soil[J]. Acta Prataculturae Sinica, 2011, 20(5):57-65.
[8] 陈洪, 胡庭兴, 王茜, 等. 香樟凋落叶分解物对辣椒生长发育的影响[J]. 西北植物学报, 2014, 34(12): 2525-2534. DOI:10.7606/j.issn.1000-4025.2014.12.2525. CHEN H, HU T X, WANG Q, et al. Effect of decomposing leaf litter of Cinnamomum camphora on growth and development of Capsicum annuum[J]. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(12): 2525-2534.
[9] 李仲彬, 胡庭兴, 李霜, 等. 香樟凋落叶在土壤中分解初期对凤仙花生长和生理特性的影响[J]. 应用与环境生物学报, 2015, 21(3): 571-578. LI Z B, HU T X, LI S, et al. Effects of initial decomposing leaf litter of Cinnamomum camphora on the growth and physiology of Impatiens balsamina[J].Chinese Journal of Applied & Environmental Biology, 2015, 21(3): 571-578.
[10] 黄溦溦, 胡庭兴, 张念念, 等. 银木凋落叶腐解过程对小白菜生长和抗性生理的影响[J]. 生态学报, 2012, 32(12): 3883-3891. DOI:10.5846/stxb201109161355. HUANG W W, HU T X, ZHANG N N, et al. Effects of leaf fitter of Cinnamomum septentrionale on growth and resistance physiology of Brassica rapa in the decomposition process of fitter[J]. Acta Ecologica Sinica, 2012, 32(12): 3883-3891. DOI:10.5846/stxb201109161355.
[11] 陈刚, 彭勇, 涂利华, 等. 天竺桂凋落叶对凤仙花生长和光合特性的影响[J]. 西北植物学报, 2014, 34(5): 1015-1024. DOI:10.7606/j.issn.1000-4025.2014.05.1015. CHEN G, PENG Y, TU L H, et al. Effects of Cinnamomum japonicum leaf litter addition on the growth and photosynthetic characteristics of Impatiens balsamina[J]. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(5): 1015-1024.
[12] 李秋玲, 肖辉林. 土壤性质及生物化学因素与植物化感作用的相互影响[J]. 生态环境学报, 2012, 21(12): 2031-2036. LI Q L, XIAO H L. The interactions of soil properties and biochemical factors with plant allelopathy[J]. Ecology and Environment Sciences, 2012, 21(12): 2031-2036.
[13] LI Y Q, HU T X, DUAN X, et al. Effects of decomposing leaf litter of Eucalyptus grandis on the growth and photosynthetic characteristics of Lolium perenne[J]. Journal of Agricultural Science, 2013, 5(3). DOI:10.5539/jas.v5n3p123.
[14] GIANNOPOLITIS C N, RIES S K. Superoxide dismutases: I. Occurrence in higher plants[J]. Plant Physiology, 1977, 59(2): 309-314. DOI:10.1104/pp.59.2.309.
[15] 熊庆娥. 植物生理学实验教程[M]. 成都:四川科学技术出版社, 2003.
[16] 赵世杰, 史国安, 董新纯. 植物生理学实验指导[M]. 北京: 中国农业科学技术出版社, 2002.
[17] VANGCE E D, BROOKES P C, JENKINSON D S. An extraction method for measuring soil microbial biomass C[J]. Soil Biology and Biochemistry, 1987, 19(6): 703-707. DOI:10.1016/0038-0717(87)90052-6.
[18] 奚振邦. 硝态氮与铵态氮[J]. 磷肥与复肥, 2011,26(1): 62-65. DOI:10.3969/j.issn.1007-6220.2011.01.024. XI Z B. Ammonium nitrogen and nitrate nitrogen[J]. Phosphate & Compound Fertilizer, 2011,26(1): 62-65.
[19] 王春阳, 周建斌, 夏志敏,等. 黄土高原区不同植物凋落物搭配对土壤微生物量碳、氮的影响[J]. 生态学报, 2011(8): 2139-2147. WANG C Y, ZHOU J B, XIA Z M, et al. Effects of mixed plant residues from the Loess Plateau on microbial biomass carbon and nitrogen in soil[J]. Acta Ecologica Sinica, 2011(08): 2139-2147.
[20] CHENG Y, WANG J, ZHANG J B, et al. The mechanisms behind reduced NH+4 and NO-3 accumulation due to litter decomposition in the acidic soil of subtropical forest[J]. Plant and Soil, 2014, 378: 295-308. DOI:10.1007/s11104-014-2032-x.
[21] HODGE A, ROBINSON D, FITTER A H. Are microorganisms more effective than plants at competing for nitrogen[J]. Trends in Plant Science, 2000, 5(7): 304-308. DOI:10.1016/S1360-1385(00)01656-3.
[22] PELLISSIER F, GALLET C, SOUTO X C. Allelopathic interaction in forest ecosystems[C]// REIGOSA M J, PEDROL N. Allelopathy: from molecules to ecosystems. Enfield, New Hampshire: Science Publishers Inc, 2002: 257-269.
[23] PAAVOLAINEN L, KITUNEN V, SMOLANDER A. Inhibition of nitrification in forest soil by monoterpenes[J].Plant and Soil, 1998, 205(2): 147-154.
[24] LNDERJIT, LAMBERS H, COLMER T D. Soil microorganisms: an important determinant of allelopathic activity[J]. Plant and Soi1, 2005, 274: 227-236.DOI:10.1007/1-4020-4099-7_12.
[25] KUMAR V, BRAINARD D C, BELLINDER R R. Suppression of powell amaranth(Amaranthus powellii)by buckwheat residues: role of allelopathy[J]. Weed Science, 2009, 57(1): 66-73. DOI:10.1614/WS-08-028.1.
[26] 余叔文, 汤章城. 植物生理与分子生物学[M]. 2版.北京: 科学出版社, 1998: 721-738.
[27] 张燕, 慕小倩. 外来杂草反枝苋对农作物的化感作用及其风险评价[J]. 西北植物学报, 2008, 28(4): 771-776. DOI:10.3321/j.issn:1000-4025.2008.04.021. ZHANG Y, MU X Q. Allelopathic effects of Amaranthus retroflexus L. and its risk assessment[J].Acta Bot Bor -Occident Sin, 2008, 28(4): 771-776.
[28] 周宝利, 韩琳, 尹玉玲, 等. 化感物质棕榈酸对茄子根际土壤微生物组成及微生物量的影响[J]. 沈阳农业大学学报, 2010, 41(3): 275-278. DOI:10.3969/j.issn.1000-1700.2010.03.004. ZHOU B L, HAN L, YING Y L, et al. Effects of allelochemicals hexadecanoic acid on soil microbial composition and biomass in rhizosphere of eggplant[J]. Journal of Shenyang Agricultural University, 2010, 41(3): 275-278.
[29] 杨延杰, 王晓伟, 赵康, 等. 邻苯二甲酸对萝卜种子萌发、幼苗叶片膜脂过氧化及渗透调节物质的影响[J]. 生态学报,2013,33(19):6074-6080. DOI:10.5846/stxb201304260826. YAN Y J, WANG X W, ZHAO K, et al. Effects of pbtbalic acid on seed germination, membrane lipid peroxidation and osmoregulation substance of radish seedlings[J]. Acta Ecologica Sinica, 2013, 33(19): 6074-6080.
[30] 黄建贝, 胡庭兴, 吴张磊, 等. 核桃凋落叶分解对小麦生长及生理特性的影响[J]. 生态学报, 2014, 34(23): 6855-6863. DOI:10.5846/stxb201303070363. HUANG J B, HU T X, WU Z L, et al. Effects of decomposing leaf litter of Juglans regia on growth and photosynthetic characterristics of Triticum aestivum[J]. Acta Ecologica Sinica, 2014, 34(23): 6855-6863.
[31] 安玉艳, 郝文芳, 龚春梅, 等. 干旱-复水处理对杠柳幼苗光合作用及活性氧代谢的影响[J]. 应用生态学报, 2010, 21(12): 3047-3055. AN Y Y, HAN W F, GONG C M, et al. Effects of drying and re-watering on the photosynthesis and active oxygen metabolism of Periploca sepium seedlings[J]. Chinese Journal of Applied Ecology, 2010, 21(12): 3047-3055.

相似文献/References:

[1]陈香波,张德顺*,毕庆泗,等.上海地区正常与黄化香樟表型植株的ISSR特征分析[J].南京林业大学学报(自然科学版),2012,36(01):033.[doi:10.3969/j.jssn.1000-2006.2012.01.007]
 CHEN Xiangbo,ZHANG Deshun*,BI Qingsi,et al.Genetic difference between normal and leave chlorosis Cinnamomum camphora detected by ISSR analysis[J].Journal of Nanjing Forestry University(Natural Science Edition),2012,36(03):033.[doi:10.3969/j.jssn.1000-2006.2012.01.007]

备注/Memo

备注/Memo:
收稿日期:2016-01-26 修回日期:2016-09-08
基金项目:“十二五”国家科技支撑计划(2011BAC09B05); 四川省教育厅重点项目(13ZA0246)
第一作者:张如义(847408099@qq.com)。*通信作者:胡红玲(15039081@qq.com),副教授,博士。
引文格式:张如义,胡红玲,吕向阳,等. 香樟凋落叶分解对几种园地作物抗性生理和土壤氮组分的影响[J]. 南京林业大学学报(自然科学版),2017,41(3):29-36.
更新日期/Last Update: 2017-05-20