[1]郝 建,等.格木人工林节子的分布特征及预测模型[J].南京林业大学学报(自然科学版),2017,41(03):100-104.[doi:10.3969/j.issn.1000-2006.2017.03.015]
 HAO Jian,MENG Mingjun,HUANG Dewei,et al.Distribution and statistical analysis of knots in Erythrophleum fordii plantations[J].Journal of Nanjing Forestry University(Natural Science Edition),2017,41(03):100-104.[doi:10.3969/j.issn.1000-2006.2017.03.015]
点击复制

格木人工林节子的分布特征及预测模型/HTML
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
41
期数:
2017年03期
页码:
100-104
栏目:
研究论文
出版日期:
2017-05-31

文章信息/Info

Title:
Distribution and statistical analysis of knots in Erythrophleum fordii plantations
文章编号:
1000-2006(2017)03-0100-05
作者:
郝 建1 2蒙明君1黄德卫1韦菊玲1李忠国1唐继新1徐大平2*
1. 中国林业科学研究院热带林业实验中心, 广西 凭祥 532600;
2. 中国林业科学研究院热带林业研究所, 广东 广州 510520
Author(s):
HAO Jian12MENG Mingjun1HUANG Dewei1WEI Juling1LI Zhongguo1TANG Jixin1 XU Daping2*
1. Experimental Center of Tropical Forestry, Chinese Academy of Forestry, Pingxiang 532600, China;
2. Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
关键词:
格木 节子 分布特征 预测模型
Keywords:
Erythrophleum fordii knot distribution characteristics predicting model
分类号:
S796
DOI:
10.3969/j.issn.1000-2006.2017.03.015
摘要:
【目的】分析节子在格木(Erythrophleum fordii)生长过程中的发生、形成及分布特征,同时通过逐步回归分析,筛选出关键因子建立评判节子影响的多元回归模型。【方法】以30年生格木作为研究对象,利用树干解析方法对其节子的形成及分布特征进行研究。【结果】与地理方位相比,坡向是影响格木分枝分布的重要因素; 树干高度2.0~8.0 m的区段上分布的节子最多,此段是木材利用率最高部分,节子分布严重影响格木的利用价值; 分枝角度小于60°的分枝形成节子的直径均大于2.5 cm,直径越大死节长度越大,节子在木质部的跨度越大; 第1~15年是格木形成分枝的高峰期,分枝脱落及伤口愈合集中在第16~25年; 第11~20年间格木形成死节最多,该时段是控制死节形成的关键时期。通过逐步回归分析,筛选出分枝直径(BD)、分枝角度(IA)和分枝年龄(YB)3个关键因子,并建立了与节子发生点到愈合点距离(RT)的多元回归模型:yRT=1.634 4xBD+0.067 8xIA+0.164 8xYB-1.611 4(F=106.869 7,P=0.000 1)。【结论】可以利用该模型来预测格木分枝形成节子后对木材的影响状况。
Abstract:
【Objective】 In order to investigate the formation and distribution characteristics of knots during the process of Erythrophleum fordii growth, and screen out the key factors to establish a multiple regression model to predict the effects on branch wood after forming knot by step wise regression analysis. 【Methods】 Thirty years old E. fordii plantation was researched by using a stem analysis method. 【Results】The results indicated that compared with geographical location, slope direction was the important factor influencing the distribution of E. fordii branches. Most knots were distributed on the highest utilization region of E. fordii trunks(2.0-8.0 m), which seriously reduced the wood utilization value. When branch angle was less than 60°, the knot diameter was greater than 2.5 cm. As the branch diameter increased, the length between dead knots and the span of knots in xylem was larger. Peak forming on branches occurred at 1-15 years. Branch wound healing was concentrated at 16-25 years, and most dead knots formed at 11-20 years, which was the critical period for the control of dead knot formation. Diameter of the branch(BD), insertion angle of the branch(IA), and year of birth of the branch(YB)were selected as key factors to establish a multiple regression model by step wise regression analysis, yRT = 1.634 4xBD + 0.067 8xIA + 0.164 8 xYB-1.611 4(F = 106.869 7, P = 0.000 1). 【Conclusions】The model was suitable to predict the effects on branch wood caused by knot formation.

参考文献/References:

[1] 黄素涌, 王建和, 吕建雄, 等. 世界节子研究进展[J]. 林产工业, 2011, 38(5): 3-7. HUANG S Y, WANG J H, LYU J X, et al. Review of overall research on knots[J]. China Forest Products Industry, 2011, 38(5): 3-7.
[2] BODIG J, JAYNE B A. Mechanics of wood and wood composites[M]. New York: Van Nostrand Reinhold, 1981:712.
[3] LEMIEUX H, SAMSON M, USENIUS A. Shape and distribution of knots in a sample of Picea abies logs[J]. Scandinavian Journal of Forest Research, 1997, 12(1): 50-56. DOI: 10.1080/02827589709355383.
[4] FUJIMORI T. Dynamics of crown structure and stem growth based on knot analysis of a hinokicypress[J]. Forest Ecology and Management, 1993, 56(1): 57-68. DOI: 10.1016/0378-1127(93)90103-T.
[5] M?KINEN H. Effect of stand density on radial growth of branches of Scots pine in southern and central Finland[J]. Canadian Journal of Forest Research, 1999, 29(8): 1216-1224. DOI:10.1139/x99-060.
[6] M?KINEN H. Effect of stand density on the branch development of silver birch(Betula pendula Roth)in central Finland[J]. Trees, 2002, 16(4-5): 346-353. DOI:10.1007/s00468-002-0162-x.
[7] KERSHAW Jr J A, MAGUIRE D A, HANN D W. Longevity and duration of radial growth in Douglas-fir branches[J]. Canadian Journal of Forest Research, 1990, 20(11): 1690-1695. DOI:10.1139/x90-225.
[8] 史军辉, 黄忠良, 蚁伟民,等. 渐危植物格木群落动态及其保护对策[J]. 西北林学院学报, 2005, 20(3):65-69. SHI J H HUANG Z L, YI W M, et al. Dynamics of Erythrophleum fordii community and conservation strategies[J]. Journal of Northwest Forestry University, 2005, 20(3):65-69.
[9] 黄忠良, 郭贵仲, 张祝平. 渐危植物格木的濒危机制及其繁殖特性的研究[J]. 生态学报, 1997, 17: 671-676. HUANG Z L, GUO G Z, ZHANG Z P.A study about endangered mechanism of Erythrophleum fordii[J]. Acta Ecologica Sinica, 1997, 17: 671-676.
[10] 赵志刚, 郭俊杰, 沙二, 等. 我国格木的地理分布与种实表型变异[J]. 植物学报, 2009, 44(3): 338-344. ZHAO Z G, GUO J J, SHA E, et al. Geographic distribution and phenotypic variation of fruit and seed of Erythrophleum fordii in China[J]. Chinese Bulletin of Botany, 2009, 44(3): 338-344.
[11] 方夏峰, 方柏州. 闽南格木木材物理力学性质的研究[J]. 福建林业科技, 2007, 34(2): 146-147. DOI: 10.13428/j.cnki.fjlk.2007.02.037. FANG X F, FANG B Z. Wood physical and mechanical properties of Erythrophleum fordii in southern Fujian [J]. Journal of Fujian Forestry Science and Technology, 2007, 34(2): 146-147.
[12] 贾炜玮. 樟子松人工林枝条生长及节子大小预测模型的研究[D]. 哈尔滨:东北林业大学, 2006. JIA W W. Predicting models of branch growth and knot properties for Mongolian Scots pine in plantation[D]. Harbin:Northeast Forestry University, 2006.
[13] 陈东升, 金钟跃, 李凤日, 等. 樟子松节子的大小及分布[J]. 东北林业大学学报, 2007, 35(5):19-21. DOI: 10.13759/j.cnki.dlxb.2007.05.006. CHEN D S, JIN Z Y, LI F R, et al. Knot size and distribution of Mongolian pine plantations[J]. Journal of Northeast Forestry University, 2007, 35(5):19-21.
[14] SPIECKER H, HEIN S. Comparative analysis of occluded branch characteristics for Fraxinus excelsior and Acer pseudoplatanus with natural and artificial pruning[J]. Canadian Journal of Forest Research, 2007, 37(8): 1414-1426. DOI:10.1139/X06-308.
[15] 方升佐, 徐锡增, 严相进, 等. 修枝强度和季节对杨树人工林生长的影响[J]. 南京林业大学学报(自然科学版), 2000, 24(6):6-10.DOI: 10.3969/j.issn.1000-2006.2000.06.002. FANG S Z, XU X Z, YAN X J, et al. Effects of pruning intensities and pruning seasons on the growth dynamics of the poplar plantation[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2000, 24(6):6-10.
[16] DELEUZE C, HERVé J C, COLIN F, et al. Modelling crown shape of Picea abies: spacing effects[J]. Canadian Journal of Forest Research, 1996, 26(11): 1957-1966. DOI:10.1139/x26-221.
[17] CLUZEAU C, GOFF N L, OTTORINI J M. Development of primary branches and crown profile of Fraxinus excelsior[J]. Canadian Journal of Forest Research, 1994, 24(12): 2315-2323. DOI: 10.1139/ x94-299.
[18] LEMIEUX H, BEAUDOIN M, ZHANG S Y. Characterization and modeling of knots in black spruce(Picea mariana)logs[J]. Wood and Fiber Science, 2001, 33(3):465-475.

备注/Memo

备注/Memo:
收稿日期:2016-03-30 修回日期:2016-07-05
基金项目:广西自然科学基金青年基金项目(2015GXNSFBA139057); 中国林业科学研究院热带林业实验中心主任基金项目(RL2011-04号)
第一作者:郝建(xuzhouhaojian@126.com),工程师,博士生。
引文格式:郝建,蒙明君,黄德卫,等. 格木人工林节子的分布特征及预测模型[J]. 南京林业大学学报(自然科学版),2017,41(3):100-104.
更新日期/Last Update: 2017-05-20