[1]王建军,孟京辉*.林分结构多样性参数与纹理信息相关分析中最优窗口的确定[J].南京林业大学学报(自然科学版),2017,41(03):112-116.[doi:10.3969/j.issn.1000-2006.2017.03.017]
 WANG Jianjun,MENG Jinghui*.Determining optimal window size based on correlation between texture information and stand structural diversity indices[J].Journal of Nanjing Forestry University(Natural Science Edition),2017,41(03):112-116.[doi:10.3969/j.issn.1000-2006.2017.03.017]
点击复制

林分结构多样性参数与纹理信息相关分析中最优窗口的确定/HTML
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
41
期数:
2017年03期
页码:
112-116
栏目:
研究论文
出版日期:
2017-05-31

文章信息/Info

Title:
Determining optimal window size based on correlation between texture information and stand structural diversity indices
文章编号:
1000-2006(2017)03-0112-05
作者:
王建军孟京辉*
北京林业大学,省部共建森林培育与保护教育部重点实验室, 北京 100083
Author(s):
WANG Jianjun MENG Jinghui*
Key Laboratory for Siviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083
关键词:
林分结构 纹理信息 结构多样性指数 窗口大小 SPOT5 广西
Keywords:
forest structure texture information structural diversity window sizes SPOT5 Guangxi
分类号:
S757
DOI:
10.3969/j.issn.1000-2006.2017.03.017
摘要:
【目的】遥感影像中的纹理指数在林业领域的应用日益广泛,窗口大小对纹理指数与林分结构多样性指数的相关性影响较大,因此研究试图利用纹理指数与林分结构多样性指数的相关性大小确定最优窗口,以期实现林分结构多样性指数的准确预估。【方法】基于广西壮族自治区一类调查的 68 块杉木纯林或混交林样地,计算得出林分结构多样性指数; 根据 SPOT5 全色波段,分别计算7种窗口(3×3、5×5、7×7、9×9、11×11、13×13 和 15×15)下的纹理指数,对窗口大小与纹理指数两者进行Pearson相关性分析,并确定最优窗口。【结果】熵、同质性、角二阶矩阵、对比度、非相似度、变化量以及平均值与林分结构多样性的相关性随窗口的变化不显著,但纹理相关性指数与 DBH 标准差的相关系数的变化率达到了86%。【结论】基于DBH标准差与纹理指数相关关系的变化规律,确定研究区最优窗口大小为11×11。
Abstract:
【Objective】 Image textural features derived from optical remote sensing images have been widely used in forestry. Because window sizes can significantly influence the correlation between forest structural diversity and image textural features, in this study we attempted to determine the optimal window size based on the correlation coefficient for accurate estimation of forest structural diversity. 【Method】We first calculated forest structural diversity indices for 68 national forest inventory plots in the Guangxi Zhuang Autonomous region. Secondly, based on the SPOT-5 panchromatic band, we extracted textural features using different window sizes(3×3, 5×5, 7×7, 9×9, 11×11, 13×13 and 15×15). Finally, we performed Pearson correlation analysis between image textural features and forest structural diversity indices to determine the optimal window size. 【Result】The results showed that the correlation between forest structural diversity indices and textural features, i.e. entropy, homogeneity, angular second matrixes, contrast, dissimilarity, variation and mean value, exhibited fewer significant differences in response to changes in window size. In contrast, the change rate of the correlation coefficient between DBH standard deviation and image correlation index was as high as 86%. 【Conclusion】 Consequently, we determined the optimal window size to be 11 × 11 pixels.

参考文献/References:

[1] 雷相东,唐守正. 林分结构多样性指标研究综述[J]. 林业科学,2002,38(3):140-146.DOI:10.11707/j.1001-7488.20020325. LEI X D,TANG S Z. Institute of forest resource information techniques [J]. Scientia Silvae Sinicae, 2002,38(3): 140-146.
[2] 张锦水,潘耀忠,韩立建,等. 光谱与纹理信息复合的土地利用/覆盖变化动态监测研究[J]. 遥感学报,2007(4): 500-510. DOI:10.11834/jrs.20070470. ZHANG J S,PAN Y Z,HAN L J et al. Study on dynamic monitoring of land use / cover change based on spectral and texture information [J]. Journal of Remote Sensing, 2007(4): 500-510.
[3] 王妮,彭世揆,刘斌,等. 近10年江苏宿迁森林蓄积量变化的定量遥感监测[J]. 南京林业大学学报(自然科学版),2013,37(5):65-69. DOI:10.3969/j.issn.1000-2006.2013.05.013. WANG N, PENG S K, LIU B et al. A study on detecting the changes of the forest volume of Suqian in Jiangsu based on the quantitative remote sensing during 2000-2010[J]. Journal of Nanjing Forestry University(Natural Sciences Edition),2013,37(5):65-69.
[4] 梁尧钦,曾辉. 高光谱遥感在植被特征识别研究中的应用[J]. 世界林业研究, 2009,22(1): 41-47.DOI:10.13466/j.cnki.lyzygl.2011. 06. 022. LIANG Y Q,ZENG H. Application of hyperspectral remote sensing in identification of vegetation on characteristics [J]. World Forestry Research, 2009,22(1): 41-47.
[5] 陈丽,张晓丽,焦志敏. 基于混合像元分解模型的森林叶面积指数反演[J]. 农业工程学报,2013,29(13):124-129. DOI:10.3969/j.issn.1002-6819.2013.13.017. CHEN L, ZHANG X L, JIAO Z M et al. Reversion of leaf area index in forest based on linear mixture model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013,29(13):124-129.
[6] 谭炳香,李增元,陈尔学,等. 高光谱遥感森林信息提取研究进展[J]. 林业科学研究,2008,21(S1):105-111. DOI:10.3321/j.issn:1001-1498.2008.s1.021. TAN B X, LI Z Y, CHEN E X, et al Research advance in forest information extraction from hyoerspectral remote sensing data [J]. Forest Research, 2008,21(S1):105-111.
[7] OZDEMIR I, KARNIELI A. Predicting forest structural parameters using the image texture derived from World View-2 multispectral imagery in a dry land forest,Israel [J]. International Journal of Applied Earth Observation and Geo-information,2011,13:701-710.DOI:10.1016/j.jag. 2011.05.006.
[8] 周靖靖,赵忠,刘金良,等. 基于快鸟影像纹理特性的刺槐林叶面积指数估算[J]. 应用生态学报,2014,25(5): 1266-1274. ZHOU J J, ZHAO Z, LIU J L,et al. Estimating leaf area index of black locust(Robina pseudoacacia L.)plantations based on texture parameters of Quick bird imagery[J]. Chinese Journal of Applied Ecology, 2014,24(5): 1266-1274.
[9] KAYITAKIRE F, HAMEL C, DEFOURNY P. Retrieving forest structure variables based on image texture analysis and IKONOS-2 imagery[J]. Remote Sensing of Environment, 2006, 102(3/4): 390-401. DOI:10.1016/j.rse.2006.02.022.
[10] MARCEAU D J, HOWARTH P J, DUBOIS J M, et al. Evaluation of the grey-level co-occurrence matrix method for land-cover classification using spot imagery [J]. IEEE Transactions on Geoscience & Remote Sensing, 1990, 28(4): 513-519.
[11] 刘锦绣,刘平慧,吕颖,等. 变窗口纹理在SPOT5影像土地覆盖分类中的应用研究[J].地理与地理信息科学, 2013,29(5):26-30.DOI:10.7702/dlydlxxkx20130506. LIU J X, LIU P H, LYU Y,et al. An applied research of changing window texture land cover cassification using SPOT5 image [J]. Geography and Geo-Information Science, 2013,29(5):26-30.
[12] HUANG Y,YUE A Z, SU W, et al. Texture feature extraction for land-cover classification of remote sensing data in land consolidation district using semi-variogram[J]. Appled Computer & Appled Computation Science, 2008,7(7):857-864.
[13] PATHAK V, DIKSHIT O. A new approach for finding an appropriate combination of texture parameters for classification[J]. Geocarto International, 2010, 25(4):295-313.
[14] SHABAN M A, DIKSHIT O. Evaluation of merging SPOT multispectral and panchromatic data for classification of urban environment[C]// Geoscience and Remote Sensing Symposium, 1999. IGARSS ’99 Proceedings. IEEE, 1999, 2:1214-1216.DOI:10.1109/IGARSS.1999.774582.
[15] 黎良财,张晓丽,郭航. 基于 SVM 方法的 SPOT-5影像植被分类[J]. 东北林业大学学报,2014,42(1): 51-56. LI L C,ZHANG X L, GUO H. Vegetation extraction in SPOT5 image with SVM method [J]. Journal of Northeast Forestry University,2014,42(1): 51-56.
[16] 宁亮亮,张晓丽. 基于纹理信息的Landsat-8影像植被分类初探[J].中南林业科技大学学报,2014,34(9):60-64.DOI:10.3969/ j.issn.1673-923X.2014.09.012. NING L L,ZHANG X L. A preliminary study on vegetation classification based on texture information of Landsat-8 images [J].Journal of Central South University of Forestry & Technology, 2014,34(9): 60-64.
[17] 王妮,彭世揆,李明诗. 基于树种分类的高分辨率遥感数据纹理特征分析[J]. 浙江农林大学学报, 2012,29(2): 210-217. DOI:10.3969/j.issn.2095-0756.2012.02.010. WANG N,PENG S K,LI M S. High-resolution remote sensing of textural images for tree species classification [J]. Journal of Zhejiang Forestry College, 2012(2): 210-217.
[18] MIGUEL A C, MARTIN R, DE JONG B H J. Estimation of tropical forest structure from SPOT-5 satellite images [J]. International Journal of Remote Sensing,2010,31(10): 2767-2782.DOI:10.1080/01431160903095460.
[19]MAGURARRAN A E. Measuring biological diversity[J]. African Journal of Aquatic Science, 2004, 29(2):285-286.
[20] LI Y F, HUI G, ZHAO Z H, et al. The bivariate distribution characteristics of spatial structure in natural[J]. Journal of Vegetation Science, 2012, 23(6):1180-1190. DOI: 10.1111/j.1654-1103.2012.01431.x.
[21] 胡艳波,惠刚盈. 优化林分空间结构的森林经营方法探讨[J]. 林业科学研究, 2006, 19(6):1-8. HU Y B,HUI G Y. A discussion on forest management method optimizing forest spatial structure [J]. Forest Research, 2006, 19(6):1-8.
[22] 惠刚盈,李丽,赵中华,等. 林木空间分布格局分析方法[J]. 生态学报,2007,27(11):4717-4728. DOI:10.3321/j.issn:1000-0933.2007.11.040. HUI G Y,LI L,ZHAO Z H, et al. Comparison of methods in analysis of the tree spatial distribution pattern[J]. Acta Ecologica Sinica, 2007, 27(11): 4717-4728.
[23] EGGERS J J, BAUML R, TZSCHOPPE R, et al. Scalar costa scheme for information embedding[J]. IEEE Transactions on Signal Processing, 2003, 51(4):1003-1019. DOI:10.1109/TSP.2003.809366.

相似文献/References:

[1]朱跃韬,李建贵*,王健.阿尔泰山河谷林封育研究[J].南京林业大学学报(自然科学版),2011,35(03):015.[doi:10.3969/j.jssn.1000-2006.2011.03.016]
 ZHU Yuetao,LI Jiangui*,WANG Jian.Effects of enclosing forest in valley forest of Altai Mountain[J].Journal of Nanjing Forestry University(Natural Science Edition),2011,35(03):015.[doi:10.3969/j.jssn.1000-2006.2011.03.016]
[2]程晓义,林昌庚.雪岭云杉林分结构密度图的编制[J].南京林业大学学报(自然科学版),1988,12(01):019.[doi:10.3969/j.jssn.1000-2006.1988.01.003]
 Cheng Xiaoyi & Lin Changgeng.A STAND STRUCTURE DENSITY DIAGRAM FOR SCHRENK SPRUCE IN XINGJIANG[J].Journal of Nanjing Forestry University(Natural Science Edition),1988,12(03):019.[doi:10.3969/j.jssn.1000-2006.1988.01.003]
[3]彭方仁,黄宝龙,TayJuhana,等.椰子-菠萝复合系统的结构特征与生物生产力[J].南京林业大学学报(自然科学版),1996,20(01):068.[doi:10.3969/j.jssn.1000-2006.1996.01.016]
 Peng Fangren Huang Baolong (Nangjing Forestry University Nanjing 007)Tay Juhana Lim Nam.THE STRUCTURAL CHARACTERISTICS AND BIOMASS PRODUCTIVITY OF COCONUT-PINEAPPLE INTERPLANTATION[J].Journal of Nanjing Forestry University(Natural Science Edition),1996,20(03):068.[doi:10.3969/j.jssn.1000-2006.1996.01.016]
[4]周春国,佘光辉,吴富桢,等.用变型Weibull分布对热带雨林结构规律的研究[J].南京林业大学学报(自然科学版),1998,22(04):012.[doi:10.3969/j.jssn.1000-2006.1998.04.003]
 Zhou Chunguo She Guanghui Wu Fuzheng(Nanjing Forestry University Nanjing 007)Cheng Yongfu Yang Yancheng Wang Songling(Chinese Academy of Forestry )Yang Xiusen Li Dajiang.A STUDY ON THE TROPICAL RAIN FOREST STAND STRUCTUREWITH IMPROVED WEIBULL FUNCTION[J].Journal of Nanjing Forestry University(Natural Science Edition),1998,22(03):012.[doi:10.3969/j.jssn.1000-2006.1998.04.003]
[5]李春干.广西红树林资源的分布特点和林分结构特征[J].南京林业大学学报(自然科学版),2003,27(05):015.[doi:10.3969/j.jssn.1000-2006.2003.05.004]
 LI Chun gan.Distribution and Forest Structure of Mangrove in Guangxi[J].Journal of Nanjing Forestry University(Natural Science Edition),2003,27(03):015.[doi:10.3969/j.jssn.1000-2006.2003.05.004]
[6]吴初平,叶激华,张骏,等.松材线虫入侵后黑松林分结构特征的变化[J].南京林业大学学报(自然科学版),2013,37(05):081.[doi:10.3969/j.issn.1000-2006.2013.05.016]
 WU Chuping,YE Jihua,ZHANG Jun,et al.The variation of stand structure of Pinus thunbergii forest after theinvasion of Bursaphelenchus xylophilus[J].Journal of Nanjing Forestry University(Natural Science Edition),2013,37(03):081.[doi:10.3969/j.issn.1000-2006.2013.05.016]
[7].近自然化改造对桂南马尾松和杉木人工林结构特征的影响[J].南京林业大学学报(自然科学版),2017,41(04):001.[doi:DOI:10.3969/j.issn.1000-2006.201606040]
 LIU Zhilong,JIA Hongyan *,CAI Daoxiong,et al.Impacts of close-to-nature transformation on structure characteristics of Pinus massoniana and Cunninghamia lanceolata plantation[J].Journal of Nanjing Forestry University(Natural Science Edition),2017,41(03):001.[doi:DOI:10.3969/j.issn.1000-2006.201606040]

备注/Memo

备注/Memo:
收稿日期:2016-03-06 修回日期:2016-10-13
基金项目:国家自然科学基金项目(31300532)
第一作者:王建军(805991061@qq.com)。*通信作者:孟京辉(jmeng@bjfu.edu.cn),副教授,博士。
引文格式:王建军,孟京辉. 林分结构多样性参数与纹理信息相关分析中最优窗口的确定[J]. 南京林业大学学报(自然科学版),2017,41(3):112-116.
更新日期/Last Update: 2017-05-20