[1]刘丰禄,姜 芳*,王喜平,等.应力波在落叶松活立木中的传播规律[J].南京林业大学学报(自然科学版),2017,41(03):133-139.[doi:10.3969/j.issn.1000-2006.2017.03.020]
 LIU Fenglu,JIANG Fang*,WANG Xiping,et al.Stress wave propagation patterns in larch standing trees[J].Journal of Nanjing Forestry University(Natural Science Edition),2017,41(03):133-139.[doi:10.3969/j.issn.1000-2006.2017.03.020]





Stress wave propagation patterns in larch standing trees
刘丰禄1 姜 芳1*王喜平2张厚江1刘兴凯1
1.北京林业大学工学院,北京 100083;
2.USDA Forest Products Laboratory, Madison, Wisconsin 53726, USA
LIU Fenglu1 JIANG Fang1* WANG Xiping2 ZHANG Houjiang1 LIU Xingkai1
1 School of Technology, Beijing Forestry University, Beijing 100083, China;
2 USDA Forest Products Laboratory, Madison, Wisconsin 53726, USA
应力波 落叶松活立木 COMSOL Multiphyscis 数值模拟 正交各向异性
stress wave larch standing trees COMSOL Multiphysics numerical simulation orthotropy
【目的】探究应力波在落叶松活立木中的传播形式和传播规律,为人工林材质预测评估提供理论基础。【方法】依据固体介质中的应力波传播理论和弹性力学理论,基于活立木的正交各向异性假定,利用COMSOL Multiphysics多物理场仿真软件对应力波在活立木中传播的波阵面进行了模拟计算,并通过试验验证数值模拟方法的合理性。【结果】应力波传播波阵面在开始阶段为倾斜曲线(二维)或倾斜曲面(三维),且曲线和曲面都弯向脉冲力输入点,随着距离的增大,波阵面倾斜度逐渐减小,直至最后与活立木的长度方向近似垂直,即应力波在活立木中由三维膨胀波传播形式逐渐转向准平面波传播形式; 波阵面倾斜度的减小速度随着活立木直径的减小而加快; 传播距离对波速没有影响,波速总体上随着直径的增大而增加。最后,通过试验验证,证明了这种数值模拟研究应力波在活立木中传播规律的方法是可行的。【结论】通过数值模拟手段研究应力波在活立木中的传播规律以及直径和传播距离对波速的影响是合理可行的,直径和传播距离都会对应力波在活立木中的传播形式及规律造成影响,但二者对波速的影响不同。
【Objective】The primary purpose of this study was to explore the propagation patterns of stress waves traveling in larch standing trees, and pave a theoretical foundation for further study on the prediction and evaluation of the mechanical properties of these plantation trees.【Method】In this study, the wave fronts of stress waves propagating in standing trees were simulated, and the forms of two-dimensional and three-dimensional propagation patterns of the stress waves propagating in standing trees were studied by using COMSOL Multiphysics finite element analysis software, based on the stress wave propagation theory in a solid medium and the orthotropic assumption for standing trees. Finally, a field experiment for the measurement of stress-wave timing was conducted to verify the validity of the numerical simulation method.【Result】It was found that the wavefront at the starting stage was a sloping curve or surface, bending to input point of force pulse and with the increase in distance, the inclination of the wavefront decreased gradually until it was approximately vertical to the length direction, i.e., the wavefront gradually changed from a 3D wave to a quasi-plane wave. The rate of decrease of the wavefront inclination increased with decreasing tree diameter. The travel distance had no effect on the wave velocity, but the wave velocity generally increased with increasing diameter. Finally, the feasibility of the simulation method used for investigating the stress-wave propagation patterns in standing trees was verified.【Conclusion】The numerical simulation method is practicable for the study of the propagation patterns of stress waves in standing trees and the effects of the diameter and propagation distance on the wave velocity. The diameter as well as the propagation distance could influence the propagation patterns of stress waves in standing trees, but their effects on stress-wave velocity were different.


[1] TOULMIN M J, RAYMOND C A. Developing a sampling strategy for measuring acoustic velocity in standing Pinus radiata using the treetap time of flight tool[J]. New Zealand Journal of Forestry Science, 2007, 37(1).
[2] WANG X P, DIVOS F, PILON C, et al. Assessment of decay in standing timber using stress wave timing nondestructive evaluation tools[R/OL]. Madison: USDA Forest Products Laboratory, 2004
[2006-07-10].http:∥www. fpl. fs. fed. us /documnts /fplgtr /fpl_gtr147. pdf.
[3] ROSS R J, WARD J C, TENWOLDE A. Identifying bacterially infected oak by stress wave nondestructive evaluation[R/OL]. Madison: USDA Forest Products Laboratory, 1992
[2006-07-10]. http:∥www. fpl. fs. fed. us /documnts /fplrp /fplrp585. pdf.
[4] PILON C L. Effectiveness of a nondestructive evaluation technique for assessing standing timber quality[D]. Houghton: Michigan Technological University, 2005.
[5] WANG X P, ROSS R J, MCCLELLAN M, et al. Strength and stiffness assessment of standing trees using a nondestructive stress wave technique[R/OL].Madison: USDA Forest Products Laboratory,2000
[2006-07-10]. http:∥www. fpl. fs. fed. us /documnts /fplrp /fplrp585. pdf.
[6] WANG X P, CARTER P, ROSS R J, et al. Acoustic assessment of wood quality of raw forest materials—A path to increase profitability[J]. Forest Products Journal, 2007, 57(5):6-14.
[7] WANG X P, ROSS R J, CARTER P. Acoustic evaluation of wood quality in standing trees Part 1. Acoustic wave behavior[J]. Wood and Fiber Science, 2007, 39(1):28-38.
[8] KASAL B, PESZLEN I, PERALTA P, et al. Preliminary tests to evaluate the mechanical properties of young trees with small diameter[J]. Holzforschung, 2007, 61(4):390-393. DOI:10.1515/hf.2007.054.
[9] 张厚江,王喜平,苏娟,等.应力波在美国红松立木中传播机理的试验研究[J].北京林业大学学报,2010,32(2):145-149. ZHANG H J, WANG X P, SU J, et al. Investigation of stress wave propagation mechanism in American red pine trees[J]. Journal of Beijing Forestry University, 2010, 32(2):145-149.
[10] 徐华东,徐国祺,王立海,等.原木横截面应力波传播时间等值线绘制及影响因素分析[J].林业科学,2014, 50(4):95-100. DOI:10.11707/j.1001-7488. 20140414. XU H D, XU G Q, WANG L H, et al. Construction of stress wave time isolines on log cross section and analysis of its effect factors[J]. Scientia Silvae Sinicae, 2014,50(4):95-100.
[11] CHAUHAN S S, WALKER J C F. Variations in acoustic velocity and density with age, and their interrelationships in Radiata pine[J]. Forest Ecology and Management, 2006, 229(3): 388-394. DOI:10.1016/ j.foreco.2006. 04. 019.
[12] RAYMOND C A, JOE B, EVANS R et al. Relationship between timber grade, static and dynamic modulus of elasticity, and silviscan properties for Pinus radiata in New South Wales[J]. New Zealand Journal of Forestry Science, 2007, 37(2): 186-196.
[13] MOORE J R, LYON A J, SEARLES G J, et al. The effects of site and stand factors on the tree and wood quality of Sitka spruce growing in the United Kingdom[J]. Silva Fennica, 2009, 43(3):383-396. DOI:10.14214/sf.195.
[14] ZHANG H, WANG X, SU J. Experimental investigation of stress wave propagation in standing trees[J]. Holzforschung, 2011, 65(5):743-748. DOI:10.1515/hf.2011.059.
[15] 高珊,侯玉婷,王立海,等.腐朽杨树冻结与常温状态应力波横向传播速度比较[J].林业科技开发,2013,27(6):48-51. GAO S, HOU Y T, WANG L H, et al. Comparative study on transverse relocities of stress wave in decayed polar trees under frozen and normal states[J]. China Forestry Science and Technology, 2013, 27(6):48-51.
[16] 刘光林,李光辉,孙晔,等.树木内部应力波传播速度模型[J].浙江农林大学学报,2015, 32(1):18-24. DOI: 10.11833/j.issn.2095-0756.2015.01.003. LIU G L, LI G H, SUN Y, et al. A stress wave propagation velocity model of standing trees[J].Journal of Zhejiang A&F University,2015,32(1):18-24.
[17] 刘丰禄,姜芳,张建中,等.落叶松生材12个弹性常数的试验研究[J].西北林学院学报,2015,30(6):227-231. DOI:10.3969/j.issn.1001-7461.2015.06.41. LIU F L, JIANG F, ZHANG J Z, et al. Twelve elastic constant values of larch forest[J].Journal of Northwest Forestry University,2015,30(6):227-231.
[18] ZHANG H J, WANG X P, ROSS R J. Stress wave propagation on standing trees-part 1.time-of-flight measurement and 2D stress wave contour maps[C]//Proceedings of the 16th International Symposium on Nondestructive Testing and Evaluation of Wood, Beijing, China, 2009.
[19] WANG X, ROSS R J, ERICKSON J R, et al. Nondestructive evaluation of standing trees with stress wave method[C]//Proceedings of the 12th International Symposium on Nondestructive Testing and Evaluation of Wood,2000.
[20] MAHON Jr J M, JORDAN L, SCHIMLECK L R, et al. A comparison of sampling methods for a standing tree acoustic device[J]. Southern Journal of Applied Forestry, 2009, 33(2):62-68.
[21] 刘兴凯. 应力波在落叶松人工林树干中传播形式试验研究[D].北京:北京林业大学,2015. LIU X K. Investigation on propagation form of stress wave in trunks of larch plantation[D]. Beijing: Beijing Forestry University, 2015.


 YU Guan-xia,RUAN Xi-gen.Analyses of Dispersion Relations of Dynamic Elastic Modulus in the Wood Materials[J].Journal of Nanjing Forestry University(Natural Science Edition),2007,31(03):131.[doi:10.3969/j.jssn.1000-2006.2007.01.031]


收稿日期:2016-09-09 修回日期:2016-11-22
引文格式:刘丰禄, 姜芳,王喜平,等. 应力波在落叶松活立木中的传播规律[J]. 南京林业大学学报(自然科学版),2017,41(3):133-139.
更新日期/Last Update: 2017-05-20