[1]黄瑞荣,张怀清*,李永亮,等.森林场景中太阳与阴影实时动态可视化模拟[J].南京林业大学学报(自然科学版),2017,41(06):109-114.[doi:10.3969/j.issn.1000-2006.201609039]
 HUANG Ruirong,ZHANG Huaiqing*,LI Yongliang,et al.Real-time dynamic visual simulation of sunlight and shadows in forest scenes[J].Journal of Nanjing Forestry University(Natural Science Edition),2017,41(06):109-114.[doi:10.3969/j.issn.1000-2006.201609039]
点击复制

森林场景中太阳与阴影实时动态可视化模拟
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
41
期数:
2017年06期
页码:
109-114
栏目:
研究论文
出版日期:
2017-11-30

文章信息/Info

Title:
Real-time dynamic visual simulation of sunlight and shadows in forest scenes
文章编号:
1000-2006(2017)06-0109-06
作者:
黄瑞荣张怀清*李永亮杨廷栋马载阳刘 洋
中国林业科学研究院资源信息研究所,北京 100091
Author(s):
HUANG RuirongZHANG Huaiqing*LI YongliangYANG TingdongMA ZaiyangLIU Yang
Research Institute of Forest Resource Information Techniques,Chinese Academy of Forestry, Beijing 100091, China
关键词:
森林场景 Billboard技术 PSSM算法 旋转 实时可视化
Keywords:
Keywords:forest scene Billboard PSSM rotation real-time visualization
分类号:
S758
DOI:
10.3969/j.issn.1000-2006.201609039
文献标志码:
A
摘要:
【目的】为真实地模拟森林场景中太阳与阴影的实时动态效果,将优化计算资源与自然光照的可视化模拟相结合,实现大规模森林场景阴影实时动态绘制。【方法】用子节点旋转方法分别构建太阳和阴影场景,采用Billboard技术进行太阳场景绘制,使用PSSM算法绘制阴影。建立各自子节点并绑定于共同的根节点上,通过在世界坐标系统中同时旋转子节点实现树木阴影形态随太阳一日升降的实时变化过程,并对有无阴影时的渲染效率进行了比较。【结果】加载5 000棵树以内,阴影绘制效率高达70.0 帧/s; 加载超过6 000棵树时,有无阴影的绘制效率都呈相对平缓下降趋势,且有阴影是无阴影时平均绘制效率的70%; 加载19 000棵树时,阴影绘制效率为16.0帧/s。【结论】子节点旋转方法试验数据容易获取,算法简单快速,效率较高,绘制效果使森林场景更加逼真,可以达到较好的视觉效果并满足实时可视化要求。
Abstract:
【Objective】3D forest visualization simulation is an active area of current forest research. In order to combine resource optimization with natural light when simulating shadow real-time dynamics in large-scale forest scenes, a novel rotation method based on child nodes was proposed.【Method】The sun and shadow child nodes, and a blind on the common root node were established by Billboard and PSSM, and then rotate the child nodes within the world coordinate system simultaneously to implement real-time dynamic process simulation of tree shadow shapes during the daytime. In addition, rendering efficiency was compared.【Result】The results showed that shadow rendering efficiency reached 70.0 frames/s when loading up to 5 000 trees; when loading more than 6 000 trees, rendering efficiency declined gently,both with and without the presence of shadows, and average rendering efficiency in forest scenes with shadow was almost 0.7 times than that of scenes without shadow.Additionally, shadow rendering efficiency was 16.0 frames/s in real-time dynamic forest scenes composed of approximately 19 000 trees.【Conclusion】 The experimental data for this approach can be easily obtained, and the simple, fast,and efficient algorithmcan render more realistic forest scenes, meet the requirements of real-time visualization,and produce better visual effects.

参考文献/References:

[1] CHOU C Y, SONG B, HEDDEN R L, et al. Three-dimensional landscape visualizations: new technique towards wildfire and forest bark beetle management[J]. Forests, 2010, 1(2): 82-98. DOI:10.3390/f1020082.
[2] 宋铁英. 一种基于图像的林分三维可视模型[J]. 北京林业大学学报, 1998,20(4):93-97. DOI:10.13332/j.1000-1522.1998.04.017. SONG T Y. A visible stand model based on image of tree[J]. Journal of Beijing Forestry University, 1998, 20(4): 93-97.
[3] 雷相东,常敏,陆元昌,等. 虚拟树木生长建模及可视化研究综述[J]. 林业科学,2006,42(11):123-131. DOI:10.3321/j.issn:1001-7488.2006.11.023. LEI X D, CHANG M, LU Y C, et al. A review on growth modelling and visualization for virtual trees[J]. Scientia Silvae Sinicae, 2006, 42(11):123-131.
[4] TANG L Y, CHEN C C, HUANG H Y, et al. An integrated system for 3D tree modeling and growth simulation[J]. Environmental Earth Sciences, 2015, 74: 7015-7028. DOI:10.1007/s12665-015-4763-2.
[5] 何秋海,彭月橙,黄心渊. 景观表现中高真实度竹林仿真的研究[J]. 计算机工程与应用,2015, 51(3):175-180. DOI:10.3778/j.issn.1002-8331.1404-0136. HE Q H, PENG Y C, HUANG X Y. Study on high-fidelity bamboo forest simulation in landscape performance[J]. Computer Engineering and Applications, 2015, 51(3): 175-180.
[6] 刘真余,芮小平,董承玮. 森林三维真实感建模与可视化LOD技术研究[J]. 中国科学院研究生院学报,2011,28(3):322-327. LIU Z Y, RUI X P, DONG C W. Study on realistic modeling of three-dimensional forest and visualization based on LOD technology[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2011, 28(3): 322-327.
[7] 张威巍. 虚拟环境中阴影的实时绘制算法研究[D]. 郑州:解放军信息工程大学, 2009. ZHANG W W. Research on real-time rendering algorithms of shading and ahadows in virtual environment[D]. Zhengzhou: PLA Information Engineering University, 2009.
[8] 曹雪峰,万刚,李科,等. 三维交互场景中基于图像的实时阴影渲染与反走样技术[J]. 系统仿真学报,2008, 20:4-7. DOI:10.16182/j.cnki.joss.2008.s1.141 CAO X F, WAN G, LI K, et al. IBR Real-time shadow and anti-aliased technology in the 3D interactive scence[J]. Journal of System Simulation, 2008, 20: 4-7.
[9] LLOYD B, WENDT J, GOVINDARAJU N K, et al. CC shadow volumes[C]//Proceedings of the eurographics symposium on rendering, ACM SIGGRAPH. New York: ACM Press, 2004: 146.
[10] 刘松平,肖德贵. 阴影绘制中的PSSM与VSM混合算法[J]. 计算机工程,2015,41(2):228-233. DOI:10.3969/j.issn.1000-3428.2015.02.044 LIU S P, XIAO D G. Hybrid algorithm of PSSM and VSM in shadow rendering[J]. Computer Engineering, 2015, 41(2): 228-233.
[11] WANG R. Shadow geometry maps for alias-free shadows[J]. Science China: Information Sciences, 2012, 55(11): 55-61. DOI:10.1007/s11432-012-4696-2
[12] ZHANG F, SUN H Q, XU L L, et al. Hardware-accelerated parallel-split shadow maps[J]. International Journal of Image and Graphics, 2008, 8(2): 223-241. DOI: http://dx.doi.org/10.1142/S0219467808003064.
[13] STAMMINGER M, DRETTAKIS G. Perspective shadow maps[C]//Computer graphics proceedings, annual conference Series, ACM SIGGRAPH. New York: ACM Press, 2002: 557-562.
[14] BRANDON LLOYD D, GOVINDARAJU N K, QUAMMEN C, et al. Logarithmic perspective shadow maps[J]. ACM Transactions on Graphics, 2008, 27(4): 1-39. DOI:10.1145/1409625.1409628.
[15] LIKTOR G, SPASSOV S, MüCKL G, et al. Stochastic soft shadow mapping[J]. Computer Graphics Forum, 2015, 34(4): 1-11. DOI:10.1111/cgf.12673.
[16] 付燕丽,刘循. 一种基于GPU的柔和阴影实现方法研究[J]. 计算机技术与发展,2013,23(2):52-56. DOI:10.3969/j.jssn.1673-629X.2013.02.013 FU Y L, LIU X. Research on realizing method of soft shadow based on GPU[J]. Computer Technology and Development, 2013, 23(2): 52-56.
[17] 沈国舫. 森林培育学[M]. 北京:中国林业出版社,2001.
[18] VERDIE Y, LAFARGE F, ALLIEZ P. LOD generation for urban scenes[J]. ACM Transactions on Graphics, 2015, 34(3):1-14. DOI:10.1145/2732527.
[19] 李永亮,鞠洪波,张怀清,等. 参数化林木个体及林分场景可视化模拟技术[J]. 林业科学研究,2013,26(6):704-709. LI Y L, JU H B, ZHANG H Q, et al. Visual simulation of the parameterized tree and the stand scene[J]. Forest Research, 2013, 26(6): 704-709.
[20] 李秀全,徐有明,涂俊杰,等. 可视化系统在湿地松人工林演示中的应用[J]. 南京林业大学学报(自然科学版),2007,31(5):121-124. DOI:10.3969/j.issn.1000-2006.2007.05.028. LI X Q, XU Y M, TU J J, et al. Application of stand visualization system in slash pine plantation display[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2007, 31(5): 121-124.
[21] 赵中华,袁士云,惠刚盈,等. 经营措施对林分空间结构特征的影响[J]. 西北农林科技大学学报(自然科学版),2008,36(7):135-142. DOI:10.13207/j.cnki.jnwafu.2008.07.026. ZHAO Z H, YUAN S Y, HUI G Y, et al. Impacts of different management measures on spatial structure characteristics[J]. Journal of Northwest A & F University(Natural Sciences Edition), 2008, 36(7):135-142.
[22] LI Y L, ZHANG H Q, JIANG X, et al. Visual simulation of techniques and effects of thinning of Chinese fir plantations with different planting densities[R]. Chengdu: 2012 IEEE 12th International Conference on Computer and Information Technology, 2012: 94-100.
[23] 李子巍,淮永建,付慧. 基于光作用的虚拟植物生长模拟与可视化研究[J]. 北京林业大学学报,2013, 35(4):81-86. DOI:10.13332/j.1000-1522.2013.04.002. LI Z W, HUAI Y J, FU H. Virtual plant growth simulation based on illumination mode1[J]. Journal of Beijng Forestry University, 2013, 35(4): 81-86.

备注/Memo

备注/Memo:
基金项目:中央级公益性科研院所基本科研业务费专项资金项目(CAFYBB2017SZ005); 国家重点研发计划(2017YFD0600905) 第一作者:黄瑞荣(rrhuangxy@126.com)。*通信作者:张怀清(zhang@caf.ac.cn),研究员,博士。
更新日期/Last Update: 1900-01-01