[1]喜文娟,刘 京,王 薇,等.不同溶氧条件大薸腐解过程的水质效应[J].南京林业大学学报(自然科学版),2017,41(06):127-133.[doi:10.3969/j.issn.1000-2006.201609062]
 XI Wenjuan,LIU Jing,WANG Wei,et al.Effects of decomposition of Pistia stratiotes on water qualityunder different dissolvedoxygen conditions[J].Journal of Nanjing Forestry University(Natural Science Edition),2017,41(06):127-133.[doi:10.3969/j.issn.1000-2006.201609062]
点击复制

不同溶氧条件大薸腐解过程的水质效应
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
41
期数:
2017年06期
页码:
127-133
栏目:
研究论文
出版日期:
2017-11-30

文章信息/Info

Title:
Effects of decomposition of Pistia stratiotes on water quality under different dissolvedoxygen conditions
文章编号:
1000-2006(2017)06-0127-07
作者:
喜文娟刘 京王 薇牛宇琛徐 驰刘茂松
南京大学生命科学学院,江苏 南京 210093
Author(s):
XI Wenjuan LIU Jing WANG Wei NIU Yuchen XU Chi LIU Maosong
School of Life Sciences, Nanjing University, Nanjing 210093, China
关键词:
水生植物 分解 充气 水质效应 水藻
Keywords:
Keywords:aquatic plant decomposition aeration water quality Pistia stratiotes
分类号:
X524
DOI:
10.3969/j.issn.1000-2006.201609062
文献标志码:
A
摘要:
【目的】研究水生植物的分解过程及其水质效应在不同水体溶氧条件下存在的差异,为水体中植物残体管理及水质调控提供参考。【方法】采用塑料箱模拟富营养化水体环境的方法,将大薸放入试验箱分别在非充气(NA)与充气(IA)状态,以及室内弱光条件下,测定不同时间水体的水质指标,分析大薸腐解过程中主要水质指标的变化。【结果】高溶氧条件下植物体分解较快,水质指标的阶段性变化具同步性,实验初期(1~25 d)主要水质指标变化较大,实验中后期(26~95 d)主要水质指标相对稳定。实验初期,IA组NO-3-N、NO-2-N浓度显著高于NA组,PO3-4-P浓度显著低于NA组; 实验中后期,除NH+4-N外,IA组各主要水质指标均低于NA组。不同生物量水平组间,IA各组中主要水质指标达到浓度最大值的时间基本一致; NA各组中NO-3-N、NO-2-N、PO3-4-P浓度达到最大值的时间随初始植物生物量的增加而延迟,但NO-3-N、NO-2-N浓度最大值组间差异较小,仅PO3-4-P浓度最大值随初始植物生物量增加而增加。【结论】相对于植物生物量对植物分解过程水质效应的影响,溶氧浓度对水质的影响更大。高溶氧条件下,主要水质指标优于低溶氧条件,特别是实验初期,组间主要水质指标差异较大,实验中后期溶氧条件对水质指标的影响则相对较小。
Abstract:
【Objective】Understanding the differences in the decomposition of aquatic plants and water quality under different dissolved-oxygen levels plays an important role in plant residue management and water-quality control. 【Method】A eutrophic aquatic environment was simulated using a plastic box with Pistia stratiotes under conditions of non-inflated aeration(NA)and inflated aeration(IA).Under indoor and low-light conditions, water-quality indices were determined at different time points. Changes in the major water-quality indices during the decomposition of Pistia stratiotes were analyzed.【Result】Plant residue decomposed faster in the IA group than the NA group; however, the water-quality indices changed synchronously. The major water-quality indices in the initial decomposition stage(1-25 d)changed considerably, and was relatively stable in the subsequent stages(26-95 d).In the initial stage, the concentrations of NO-3-N and NO-2-N remained significantly higher in the IA group than the NA group, and the concentration of PO3-4-P remained lower in the IA group than the NA group; in the subsequent stages,in addition to NH+4-N, values of the major indices were lower in the IA group than the NA group. In the IA group,the major water-quality indices reached maximum values simultaneously among different biomass levels. In the NA group, there was a delay in attaining maximum concentrations of NO-3-N, NO-2-N, and PO3-4-P,and the period of delay increased as the initial amount of plant biomass increased, particularly observable in variation in PO3-4-P concentration.【Conclusion】Generally, comparing with the effect of plant biomass, inflated aeration had a greater impact on water quality. Under the IA condition, the values of the major water-quality indices were higher than those in the NA group. There were significant differences in water quality between the two groups,especially at the initial stage of the study; however,at subsequent stages,the influence of inflated aeration on water quality indices was relatively small.

参考文献/References:

[1] VYMAZAI J. Concentration is not enough to evaluate accumulation of heavy metals and nutrients in plants[J]. Science of the Total Environment, 2016, 544: 495-498. DOI: 10.1016/j.scitotenv.2015.12.011.
[2] CHEN Y, VYMAZAL J, BREZINOVA T, et al. Occurrence, removal and environmental risk assessment of pharmaceuticals and personal care products in rural wastewater treatment wetlands[J]. Science of the Total Environment, 2016, 566: 1660-1669.DOI: 10.1016/j.scitotenv.2016.06.069.
[3] ZHOU X H, WANG G X. Nutrient concentration variations during Oenanthe javanica growth and decay in the ecological floating bed system[J]. Journal of Environmental Sciences, 2010, 22(11): 1710-1717.DOI: 10.1016/S1001-0742(09)60310-7.
[4] ALVAREZ J A, BÉCARES E. Seasonal decomposition of Typha latifolia in a free-water surface constructed wetland[J]. Ecological Engineering, 2006, 28(2): 99-105. DOI: 10.1016/j.ecoleng.2006.05.001.
[5] FERREORA V, GRACA M A. Effects of whole-stream nitrogen enrichment and litter species mixing on litter decomposition and associated fungi[J]. Limnologica-Ecology and Management of Inland Waters, 2016, 58: 69-77.DOI:10.1016/j.limno.2016.03.002.
[6] ZHANG D Q, HUI D F, LUO Y Q, et al. Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors[J]. Journal of Plant Ecology, 2008, 1(2): 85-93.DOI: 10.1093/jpe/rtn002.
[7] FERREIRA V, CASTAGNEYROL B, KORICHEVA J, et al. A meta-analysis of the effects of nutrient enrichment on litter decomposition in streams[J]. Biological Reviews, 2015, 90(3): 669-688. DOI: 10.1111/brv.12125.
[8] MAS-MARTÍ MUNOZ L, OLIVA F, et al. Effects of increased water temperature on leaf litter quality and detritivore performance: a whole-reach manipulative experiment[J]. Freshwater Biology, 2015, 60(1): 184-197. DOI: 10.1111/fwb.12485.
[9] MONROY S, MIRANDA-APODACA J, PÉREZ-L U, et al. Elevated atmospheric CO2 interacts with drought and competition to produce complex results in plant quality and subsequent microbial aquatic decomposition[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2016, 73(999): 1-7. DOI: 10.1139/cjfas-2016-0034.
[10] GODSHALK G L, WETZEL R G. Decomposition of aquatic angiosperms I: dissolved components[J]. Aquatic Botany, 1978, 5: 281-300. DOI: 10.1016/0304-3770(78)90073-6.
[11] MANUSADZIANAS L, DARGINAVICIEN E J, GYLYT E B, et al. Ecotoxicity effects triggered in aquatic organisms by invasive Acer negundo and native Alnus glutinosa leaf leachates obtained in the process of aerobic decomposition[J]. Science of the Total Environment, 2014, 496: 35-44. DOI: 10.1016/j.scitotenv.2014.07.005.
[12] 王博, 叶春, 李春华, 等. 初春苦草腐解过程中营养盐释放过程剂规律[J]. 生态与农村环境学报, 2012, 28(2): 171-175. WANG B, YE C, LI C H, et al. Process and law of nutrient release during decomposition of submerged macrophytes(Vallisneria natans)in early spring[J]. Journal of Ecology and Rural Environment, 2012, 28(2): 171-175.
[13] 唐金艳, 曹培培, 徐驰, 等. 水生植物腐烂分解对水质的影响[J]. 应用生态学报, 2013, 24(1): 83-89. TANG J Y, CAO P P, XU C, et al.Effects of aquatic plants during their decay and decomposition on waterquality[J]. Chinese Journal of Applied Ecology, 2013, 24(1): 83-89.
[14] ZIMMELS Y, KIRZHNER F, MALKOVSKAJA A. Application of Eichhornia crassipes and Pistia stratiotes for treatment of urban sewage in Israel[J]. Journal of Environmental Management, 2006, 81(4): 420-428. DOI: 10.1016/j.jenvman.2005.11.014
[15] NAHLIK A M, MITSCH W J. Tropical treatment wetlands dominated by free-floating macrophytes for water quality improvement in Costa Rica[J]. Ecological Engineering, 2006, 28(3): 246-257. DOI: 10.1016/j.ecoleng.2006.07.006.
[16] 娄敏, 廖柏寒, 刘红玉, 等. 3 种水生漂浮植物处理富营养化水体的研究[J]. 中国生态农业学报, 2005, 13(3): 194-195. LOU M, LIAO B H, LIU H Y, et al. Study of three aquatic floating plants to treat the water eutrophication[J]. Chinese Journal of Eco-Agriculture, 2005, 13(3): 194-195.
[17] 刘盼, 宋超, 朱华, 等. 3种水生植物对富营养化水体的净化作用研究[J]. 水生态学杂志, 2011, 32(2): 69-74. LIU P, SONG C, ZHU H, et al. Studies on eutrophicated water quality improvement by three kinds of hydrophytes[J]. Journal of Hydroecology, 32(2): 69-74.
[18] 王心芳, 魏复盛, 齐文启, 水和废水监测分析方法[M]. 北京: 中国环境科学出版社, 2002. WANG X F, WEI F S, QI W Q.Water and wastewater monitoring and analysis method[M]. Beijing: China Environmental Science Press, 2002.
[19] REZENDE R D S, PINTO M D O, GONGALVES JR J F, et al. The effects of abiotic variables on detritus decomposition in Brazilian subtropical mangroves[J]. Acta Limnologica Brasiliensia, 2013, 25(2): 158-168.DOI: 10.1590/S2179-975X2013000200007.
[20] WOOOMER P L, MUZIRA R, BWAMIKI D, et al. Biological management of water hyacinth waste in Uganda[J]. Biological Agriculture & Horticulture, 2000, 17(3): 181-196.DOI: 10.1080/01448765.2000.9754841.
[21] GALE P M, GILMOUR J T. Net mineralization of carbon and nitrogen under aerobic and anaerobic conditions[J]. Soil Science Society of America Journal, 1988, 52(4): 1006-1010. DOI:10.2136/sssaj1988. 03615995005200040019x.
[22] MELILLO J M, NAIMAN R J, ABER J D, et al. Factors controlling mass loss and nitrogen dynamics of plant litter decaying in northern streams[J]. Bulletin of Marine Science, 1984, 35(3): 341-356.
[23] FOREE E G, MCCARTY P L. Anaerobic decomposition of algae[J]. Environmental Science & Technology, 1970, 4(10): 842-849. DOI: 10.1021/es60045a005.
[24] CHIMNEY M J, PIETRO K C. Decomposition of macrophyte litter in a subtropical constructed wetland in south Florida(USA)[J]. Ecological Engineering, 2006, 27(4): 301-321. DOI: 10.1016/j.ecoleng.2006.05.016.
[25] 叶春, 王博. 沉水植物黑藻早期分解过程及影响因素研究[J]. 中国农学通报, 2009, 25(17): 260-264. YE C, WANG B. The early decomposition process of the submerged macrophyte Uyaritta verticillata and the factors that have a strong impact on it[J]. Chinese Agricultural Science Bulletin, 2009, 25(17): 260-264.
[26] 武海涛, 吕宪国, 杨青, 等. 三江平原典型湿地枯落物早期分解过程及影响因素[J]. 生态学报, 2007, 27(10): 4027-4035. WU H T, LV X G, YANG Q, et al. The early-stage litter decomposition and its influencing factors in the wetland of the Sanjiang Plain,China[J]. Acta Ecologica Sinica, 2007, 27(10): 4027-4035.
[27] 李燕, 王丽卿, 张瑞雷. 5 种沉水植物死亡分解过程中氮磷营养物质的释放[J]. 上海环境科学, 2008, 27(2): 68-72. LI Y, WANG L Q, ZHANG R L. Nutrient releasing dynamics during decomposition process for five species of submerged macrophytes[J]. Shanghai Environmental Sciences, 2008, 27(2): 68-72.
[28] 包裕尉, 卢少勇, 司静, 等. 溶解氧和光照对狐尾藻衰亡释放氮磷碳的影响[J]. 环境科学与技术, 2010, 33(2): 5-9. BAO Y W, LU S Y, SI J, et al. Effect of dissolved oxygen and illumination on nitrogen, phosphorus and carbon release of Myriophyllum spicatum[J]. Environmental Science and Technology, 2010, 33(2): 5-9.
[29] HAI T N, YAKUPITIYAGE A. The effects of the decomposition of mangrove leaf litter on water quality, growth and survival of black tiger shrimp(Penaeus monodon Fabricius, 1798)[J]. Aquaculture, 2005, 250(3): 700-712.DOI: 10.1016/j.aquaculture.2005.04.068.
[30] 王博, 叶春, 李春华, 等. 不同氧环境中黑藻腐解过程及对水体-底泥碳、氮、磷的影响[J]. 应用与环境生物学报, 2013, 19(3): 484-488. WANG B, YE C, LI C H, et al. The process of nutrition release during decomposition of Hydrilla verticillata in different dissolved oxygen conditions[J]. Chinese Journal of Applied and Environmental Biology, 2013, 19(3): 484-488.
[31] 邵学新, 梁新强, 吴明, 等. 杭州湾潮滩湿地植物不同分解过程及其磷素动态[J]. 环境科学, 2014, 35(9): 3381-3388. SHAO X X, LIANG X Q, WU M, et al. Decomposition and phosphorus dynamics of the litters in standing and litterbag of the Hangzhou bay coastal wetland[J]. Environmental Science, 2014, 35(9): 3381-3388.
[32] 葛绪广, 王国祥, 李振国, 等. 凤眼莲凋落物及其残体的沉降[J]. 湖泊科学, 2009, 21(5): 682-686. GE X G, WANG G X, LI Z G, et al. The litter and residue of Eichhornia crassipes(Mart.)Solms[J]. Journal of Lake Science, 2009, 21(5): 682-686.
[33] 张菊, 邓焕广, 吴爱琴, 等. 东平湖菹草腐烂分解及其对水环境的影响[J]. 环境科学学报, 2013, 33(9): 2590-2596. ZHANG J, DENG H G, WU A Q, et al. Decomposition of Potamogeton crispus and its effect on the aquatic environment of Dongping Lake[J]. Acta Scientiae Circumstantiae, 2013, 33(9):2590-2596.
[34] 潘慧云, 徐小花, 高士祥. 沉水植物衰亡过程中营养盐的释放过程及规律[J]. 环境科学研究, 2008, 21(1): 64-68. PAN H Y, XU X H, GAO S X. Study on process of nutrition release during the decay of submerged macrophytes[J]. Research of Environmental Sciences, 2008, 21(1): 64-68.
[35] WU S, HE S, HUANG J, et al. Decomposition of emergent aquatic plant(Cattail)litter under different conditions and the influence on water quality[J]. Water Air & Soil Pollution, 2017, 228(2): 70.DOI: 10.1007/s11270-017-3257-0.
[36] CHEN Y, WEN Y, ZHOU Q, et al. Effects of plant biomass on nitrogen transformation in subsurface-batch constructed wetlands: a stable isotope and mass balance assessment[J]. Water Research, 2014, 63: 158-167.DOI: 10.1016/j.watres.2014.06.015.

相似文献/References:

[1]吕瑞恒,李国雷,刘 勇*,等.不同林龄油松针叶凋落物初期分解特性比较[J].南京林业大学学报(自然科学版),2013,37(02):039.[doi:10.3969/j.issn.1000-2006.2013.02.007]
 LYU Ruiheng,LI Guolei,LIU Yong*,et al.Study on initial decomposition characteristics of Pinus tabulaeformis needle litter at different stand age[J].Journal of Nanjing Forestry University(Natural Science Edition),2013,37(06):039.[doi:10.3969/j.issn.1000-2006.2013.02.007]
[2]陈栎霖,刘语欣,范 川,等.台湾桤木-扁穗牛鞭草复合模式下凋落物分解及其养分释放动态[J].南京林业大学学报(自然科学版),2015,39(01):049.[doi:10.3969/j.issn.1000-2006.2015.01.010]
 CHEN Yuelin,LIU Yuxin,FAN Chuan,et al.Litter decomposition and nutrient release dynamics in complex ecosystem of Alnus formosana-Hemarthria compressa[J].Journal of Nanjing Forestry University(Natural Science Edition),2015,39(06):049.[doi:10.3969/j.issn.1000-2006.2015.01.010]

备注/Memo

备注/Memo:
基金项目:国家水体污染控制与治理科技重大专项(2012zx07101013); 国家自然科学基金项目(41271197,51309242) 第一作者:喜文娟(xwj1772464@163.com)。*通信作者:刘茂松(msliu@nju.edu.cn),副教授。
更新日期/Last Update: 1900-01-01