[1]陈佩珍,吴晓刚,韦 蔷,等.松科植物木质素合成相关基因研究进展[J].南京林业大学学报(自然科学版),2017,41(06):169-176.[doi:10.3969/j.issn.1000-2006.201703031]
 CHEN Peizhen,WU Xiaogang,WEI Qiang,et al.Research progress of lignin synthesis gene in Pinaceae[J].Journal of Nanjing Forestry University(Natural Science Edition),2017,41(06):169-176.[doi:10.3969/j.issn.1000-2006.201703031]
点击复制

松科植物木质素合成相关基因研究进展
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
41
期数:
2017年06期
页码:
169-176
栏目:
综合评述
出版日期:
2017-11-30

文章信息/Info

Title:
Research progress of lignin synthesis gene in Pinaceae
文章编号:
1000-2006(2017)06-0169-08
作者:
陈佩珍吴晓刚韦 蔷武 星季孔庶
南方现代林业协同创新中心,南京林业大学林木遗传与生物技术省部共建教育部重点实验室,江苏 南京 210037
Author(s):
CHEN Peizhen WU Xiaogang WEI Qiang WU Xing JI Kongshu
Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
关键词:
松科植物 木质素合成 酶基因 调控基因
Keywords:
Keywords:Pinaceae lignin synthesis enzyme genes regwlatory genes
分类号:
S722; Q591
DOI:
10.3969/j.issn.1000-2006.201703031
文献标志码:
A
摘要:
植物木质素是影响纸浆材品质的关键因素,而松科植物作为重要的纸浆材,对其木质素合成相关调控基因进行系统了解,可为完善木质素生物合成模型提供一定的理论依据。笔者通过对国内外已有研究进行分析,总结植物木质素结构、木质素合成途径、木质素合成相关酶基因及松科植物木质素合成基因的研究进展。归纳出松科植物火炬松(Pinus taeda)、马尾松(P. massoniana)、辐射松(P. radiata)、挪威云杉(Picea abie)等木质素合成酶基因研究主要集中在苯丙氨酸解氨酶(phenylalanineammonialyase,PAL)、4-香豆酸辅酶A连接酶(4-coumarate CoA ligase, 4CL)、肉桂酸4-羟化酶(cinnamic 4-hydroxygenase, C4H)、香豆酸3-羟化酶(Coumarate 3-hydroxylase, C3H)、咖啡酰辅酶A-O-甲基转移酶(caffeoyl coenzyme A-O-methyltransferase, CCoAOMT)、肉桂酰基辅酶A还原酶(Cinnamoyl CoA reductase, CCR)和肉桂醇脱氢酶(Cinnamyl alcohol dehydrogenase, CAD)等一些常见基因上,其他莽草酸羟基肉桂酰转移酶(shikimate hydroxycinnamoyl transferase, HCT)、阿魏酸5-羟化酶(ferulo 5-hydroxylase, F5H)、O-甲基转移酶(O-methyltransferase, OMT)及咖啡酸-O-甲基转移酶(caffeic acid O-methyltransferase, COMT)等基因研究较欠缺,此外,还有部分基因未涉及。木质素合成是研究松科植物纸浆材的重要切入点,对现有松科植物木质素合成过程中存在问题进行精确的估计,对进一步深入研究松科植物木质素合成机制和优质纸浆材选育具有重要意义。
Abstract:
Abstract: Plant lignin is an essential factor of affecting pulp quality. Pinaceae plants is an important pulp material which means the overall understanding of patterns and controlling factors of lignin synthesis related genes is key for improving the modeling of lignin synthesis. According the current research results, the lignin structure, the lignin synthesis pathway and the related enzymes gene of lignin synthesis in Pinaceae are summarized. Some related genes of lignin synthesis in Pinus taeda, P. massoniana, P. radiata, Picea abie and so on have been researched. The lignin syntheses genes of Pinaceae researches were mainly concentrated in common genes, such as phenylalanine ammonolyase(PAL), 4-coumarate: coenzyme A ligase(4CL), cinnamic 4-hydroxygenase(C4H), coumarate 3-hydroxylase(C3H), caffeoyl coenzyme A-O-methyltransferase(CCoAOMT), cinnamoyl CoA reductase(CCR)and cinnamyl alcohol dehydrogenase(CAD), however, some genes that lack current research, including shikimate hydroxycinnamoyl transferase(HCT), ferulate 5-hydroxylase(F5H), O-methyltransferase(OMT), and caffeic acid O-methyltransferase(COMT). Moreover, some genes were not involved in the study. Lignin synthesis is the essential process of exploring pulp quality of Pinaceae. A better understanding of existing problems of the research on lignin synthesis could contribute to further research on the mechanism of lignin synthesis and help to select high quality pulp genotype in Pinaceae plants.

参考文献/References:

[1] BOUDET A M, LAPIERRE C, GRIMA-PETTENATI J. Biochemistry and molecular biology of lignification[J]. The News Phytologist, 1995,129(2):203-236. DOI: 10.1111/j.1469-8137.1995.tb04292.x.
[2] DAVIN L B, LEWIS N G. Phenylpropanoid metabolism: biosynthesis of monolignols, lignans, neolignans, lignins and suberins[J]. Rec Adv Phytochem, 1992,26:325-375. DOI: 10.1007/978-1-4615-3430-3_11.
[3] HAHLBROCK K, SCHEEL D. Physiology and molecular biology of phenylpropanoid metabolism[J]. Annual Review of Plant Biology, 1989,40:347-369. DOI: 10.1146/annurev.pp.40.060189.002023.
[4] DIXON R A. Natural products and plant disease resistance[J]. Nature, 2001, 411: 843-847. DOI: 10.1038/35081178.
[5] BAURHOO B, RUIZ-FERIA C A, ZHAO X. Purified lignin: nutritional and health impacts on farm animals: a review[J]. Animal Feed Science and Technology, 2008, 144(3-4): 175-184. DOI: 10.1016/j.anifeedsci.2007.10.016.
[6] BHUIYAN N H, SELVARAJ G, WEI Y, et al. Role of lignification in plant defense[J]. Plant Signaling & Behavior, 2009,4:158-159. DOI: 10.4161/psb.4.2.7688.
[7] LEWIS N G, DAVIN L B. Evolution of lignan and neolignan biochemical pathways[J]. ACS Symposium Series, 1994,562:202-246. DOI: 10.1021/bk-1994-0562.ch010.
[8] 魏建华, 宋艳茹. 木质素生物合成途径及调控的研究进展[J]. 植物学报, 2001,43(8):771-779. WEI J H, SUN Y R. Recent advances in study of lignin biosynthesis and manipulation[J]. Journal of Integrative Plant Biology, 2001, 43(8)771-779.
[9] ONYSKO K A. Biological bleaching of chemical pulps: a review[J]. Biotechnology Advances,1993,11(2):179-198. DOI: 10.1016/0734-9750(93)90040-T.
[10] BOERJAN W, RALPH J, BAUCHER M. Lignin biosynthesis[J]. Annual Review of Plant Biology, 2003, 54:519-546. DOI: 10.1146/annurev.arplant.54.031902.134938.
[11] BOUDET A M, KAJITA S, GRIMA-PETTENATI J, et al. Lignins and lignocellulosics: a better control of synthesis for new and improved uses[J]. Trends in Plant Science,2003,8(12):576-581. DOI: 10.1016/j.tplants.2003.10.001.
[12] WENG J K, CHAPPLE C T. The origin and evolution of lignin biosynthesis[J]. New Phytologist, 2010,187(2): 273-285. DOI: 10.1111/j.1469-8137.2010.03327.x.
[13] PLOMION C, LEPROVOST G, STOKES A. Wood formation in trees[J]. Plant Physiology, 2001,127:1513-1523. DOI: 10.1104/pp.010816.
[14] HATAKEYAMA H, MATSUMURA H, HATAKEYAMA T. Glass transition and thermal degradation of rigid polyurethane foams derived from castor oil-molasses polyols[J]. Journal of Thermal Analysis and Calorimetry, 2013, 111(2):1545-1552. DOI: 10.1007/s10973-012-2501-5.
[15] HOLLADAY J E, BOZELL J J, WHITE J F, et al. Top value added candidates from biomass, volume II: results of screening for potential candidates from biorefinery lignin[J]. Biomass Fuels, 2007,(2):263-275. DOI: 10.2172/921839.
[16] CHEN Y R, SARKANEN S. X-Ray powder diffraction analyses of kraft lignin-based thermoplastic polymer blends[M]. Oxford, UK: Blackwell Publishing Ltd, 2009:301-315.
[17] SCHORR D, DIOUF PN, STEVANOVIC T. Evaluation of industrial lignins for biocomposites production[J]. Industrial Crops and Products, 2014,52(1):65-73. DOI: 10.1016/j.indcrop.2013.10.014.
[18] LAPIERRE C, POLLET B, PETIT-CORIL M, et al. Structural alteration of lignin in transgenic poplars with depressed cinnamoyl alcohol dehydrogenase or caffeic acid O-methyltransferase activity have an oppsite impact on the efficiency of industrial kraft pulping[J]. Plant Physiology, 1999,119:153-164. DOI:10.1104/pp.119.1.153.
[19] BUGOS R C, CHIANG V L C, CAMPBELL W H. cDNA clonging, sequence analysis and seasonal expression of lignin-bispecific caffeic acid/5-hydroxyferulic acid O-methyltransferase of aspen[J]. Plant Molecular Biology, 1991,17(6):1203-1215. DOI: 10.1007/BF00028736.
[20] DOORSSELAERE J V, BAUCHER M, CHOGNOT E, et al. A novel lignin in poplar trees with a reduced caffeic acid/5-hydroxyferulicacid O-methyltransferase activity[J]. Plant Journal, 1995,8(6):855-864. DOI: 10.1046/j.1365-313X.1995.8060855.x.
[21] HUMPHREYS J M, CHAPPLE C. Rewriting the lignin roadmap[J]. Current Opinion in Plant Biology, 2002,5(3):224-229. DOI: 10.1016/S1369-5266(02)00257-1.
[22] RASTOGI S, DWIVEDI U N. Manipulation of lignin in plants with special reference to O-methyltransferase[J]. Plant Science. 2008,174(3):264-277. DOI: 10.1016/j.plantsci.2007.11.014.
[23] GRIMA-PETTENATI J, GOFFNER D. Lignin genetic engineering revisited[J]. Plant Science, 1999,145:51-65. DOI:10.1016/S0168-9452(99)00051-5.
[24] RALPH J, LUNDQUIST K, BRUNOW G, et al. Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids[J]. Phytochemistry Reviews, 2004,3(1):29-60. DOI: 10.1023/B:PHYT.0000047809.65444.a4.
[25] VANHOLME R, RALPH J, AKIYAMA T, et al. Engineering traditional monolignols out of lignin by concomitant up-regulation of F5H1 and down-regulation of COMT in Arabidopsis[J]. Plant Journal for Cell & Molecular Biology,2010,64:885-897. DOI: 10.1111/j.1365-313X.2010.04353.x.
[26] VANHOLME R, CESARINO I, RATAJ K, et al. Caffeoyl shikimate esterase(CSE)is an enzyme in the lignin biosynthetic pathway in Arabidopsis[J]. Science, 2013,341(6150):1103-1106. DOI: 10.1126/science.1241602.
[27] VARGAS L, CESARINO I, VANHOLME R, et al. Improving total saccharification yield of Arabidopsis plants by vesselspecific complementation of caffeoyl shikimate esterase(cse)mutants[J]. Biotechnology for Biofuels, 2016,9:139-155. DOI: 10.1186/s13068-016-0551-9.
[28] DIXON R A, PAIVA N L. Stress-induced phenylpropanoid metabolism[J]. The Plant Cell,1995,7:1085-1097. DOI: 10.1105/tpc.7.7.1085.
[29] RALPH J, MACKAY J J, HATFIELD R D, et al. Abnormal lignin in a loblolly pine mutant[J]. Science, 1997,227(5325):235-239. DOI: 10.1126/science.277.5323.235.
[30] MACKAY J J, OMALLEY D M, PRESNELL T, et al. Inheritance, gene expression and lignin characterization in a mutant pine deficient in cinnamoyl alcohol dehydrogenase[J]. Proc Natl Acad Sci USA, 1997, 94(15): 8255-8260.
[31] ARISTIDOU A, PENTTILA M. Metabolic engineering applications to renewable resource utilization[J]. Current Opinion in Biotechnology, 2000,11(2):187-198. DOI: 10.1016/S0958-1669(00)00085-9.
[32] CHRISTENSEN J H, BAUCHER M, CONNELL A O, et al. Control of lignin biosynthesis[J]. Forestry Sciences, 2000,64:227-267. DOI: 10.1007/978-94-017-2311-4_9.
[33] VOO K S, WHETTEN R W, MLLEY D M, et al. 4-Coumarate: coenzyme a ligase from loblolly pine xylem isolation, characterization, and complementary DNA cloning[J]. Plant Physiol, 1995, 108(1):85-97.
[34] ZHANG X H, CHIANG V L. Molecular cloning of 4-coumarate: coenzyme a ligase in loblolly pine and the roles of this enzyme in the biosynthesis of lignin in compression wood[J]. Plant Physiol, 1997,113(1):65-74. DOI: 10.1104/pp.113.1.65.
[35] LI L, OSAKABE Y, JOSHI C P, et al. Secondary xylem-specific expression of caffeoyl-coenzyme A 3-O-methyltransferase plays an important role in the methylation pathway associated with lignin biosynthetic in Loblloly pine[J]. Plant Mol Biol, 1999,40(4):555-565. DOI: 10.1023/A:1006244325250.
[36] LI L, POPKO J L, ZHANG X H, et al. A novel multifunctional O-methyltransferase implicated in a dual methylation pathway associated with lignin biosynthesis in loblolly pine[J]. Proc Natl Acad Sci USA, 1997,94(10):5461-5466.
[37] ANTEROLA A M, JEON J H, DAVIN L B, et al. Transcriptional control of monolignol biosynthesis in Pinus taeda: factors affecting monolignol ratios and carbon allocation in phenylpropanoid metabolism[J].The Journal of Biological Chemistry,2002,277(21):18272-18280. DOI: 10.1074/jbc.M112051200.
[38] 陈碧华. 马尾松肉桂酰辅酶A还原酶基因(CCR)克隆与分析[J]. 林业科技, 2009,45(12):46-53. CHEN B H. Cloning and sequence analysis of cinnamoyl-CoA reductase gene(CCR)of Pinus massoniana[J]. Forestry Science and Technology, 2009,45(12):46-53.
[39] 曹福祥, 王猛, 龙绛雪. 马尾松苯丙氨酸解氨酶基因cDNA全长克隆与序列分析[J]. 湖南师范大学自然科学学报, 2010,33(01):91-95. CAO F X, WANG M, LONG J X. Cloning and sequence analys of full-Length cDNA of phenylalanine ammonia-lyase of Pinus massoniana[J]. Journal of Natural Science of Hunan Normal University, 2010,33(1):91-95.
[40] VAN H H, VAN G H, VAN T N, et al. Identification and functional analysis of the Pm4CL1 gene in transgenic tobacco plant as the basis for regulating lignin biosynthesis in forest trees[J]. Molecular Breeding, 2012,29(1):173-180. DOI: 10.1007/s11032-010-9535-9.
[41] 韩欣. 马尾松木质素合成途径中4CL基因克隆及RNA干扰载体构建研究[D]. 长沙:中南科技林业大学, 2012. HAN X. Gene cloning of Pinus massoniana 4CL and construction of its RNAi expression vector[D]. Changsha: Central South University of Science and Technology,2012.
[42] 张逢凯. 马尾松CAD和CCoAOMT基因的克隆与表达分析[D]. 南京: 南京林业大学, 2014. ZHANG F K. Cloning and analyzing of CAD and CCoAOMT genes from Pinus massoniana [D]. Nanjing: Nanjing Forestry University,2014.
[43] MOYLE R, MOODY J, PHILLIPS L. Isolation and characterization of a Pinus radiata lignin biosynthesis-related O-methyltransferase promoter[J]. Plant Cell Reports, 2002,20(11):1052-1060. DOI: 10.1007/s00299-002-0457-9.
[44] MÖLLER R, KOCH G, NANAYAKKARA B, et al. Lignification in cell cultures of Pinus radiata: activities of enzymes and lignin topochemistry[J]. Tree Physiology, 2006,26(2):201-210. DOI: 10.1093/treephys/26.2.201.
[45] WAGNER A, RALGH J, AKIYAMA T, et al. Exploring lignification in conifers by silencing hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase in Pinus radiata [J]. Proc Natl Acad Sci USA,2007,104(28):11856-11861. DOI: 10.1073/pnas.0701428104.
[46] ARMIN W, LIOYD D, HOON K, et al. Suppression of 4-Coumarate-CoA ligase in the coniferous gymnosperm Pinus radiata[J]. Plant Physiology, 2009,149(1):370-383. DOI: 10.1104/pp.108.125765.
[47] WAGNER A, TOBIMATSU Y, PHILLIPS L, et al. CCoAOMT suppression modifies lignin composition in Pinus radiata[J]. Plant Journal for cell & molecular biology, 2011,67(1):119-129. DOI: 10.1111/j.1365-313X.2011.04580.x.
[48] WANGHER A, TOBIMATSU Y, GOEMINNE G, et al. Suppression of CCR impacts metabolite profile and cell wall composition in Pinus radiata tracheary elements[J]. Plant Mol Biol, 2013,81(1/2):105-117. DOI: 10.1007/s11103-012-9985-z.
[49] MESSNER B, BOLL M. Elicitor-mediated induction of enzymes of lignin biosynthesis and formation of lignin-like material in a cell suspension culture of spruce(Picea abies)[J]. Plant Cell Tissue & Organ Culture, 1993,34:261-269. DOI: 10.1007/BF00029715.
[50] WADENBÄCK J, ARNOLD S V, WALTER M H, et al. Lignin biosynthesis in transgenic Norway spruce plants harboring an antisense construct for cinnamoyl CoA reductase(CCR)[J]. Transgenic Research,2008,17(3):379-392. DOI: 10.1007/s11248-007-9113-z.
[51] CRAVEN-BARTLE VENBARTLE B, PASCUAL M B, CANOVAS F M, et al. A Myb transcription factor regulates genes of the phenylalanine pathway in maritime pine[J].The Plant Journal, 2013,74(5):755-766. DOI: 10.1111/tpj.12158.
[52] 乔明星, 林晓飞, 张文波. 兴安落叶松咖啡酸-O-甲基转移酶基因的克隆及特性分析[J]. 分子植物育种, 2016,14(7):1684-1690. DOI:10.13271/j.mpb.014.001684. QIAO M X, LIN X F, ZHANG W B. Isolation and characterization of caffeic acid O methyltran-sferase gene from Larix gmelinii[J]. Molecular Plant Breeding, 2016,14(7):1684-1690. DOI:10.13271/j.mpb.014.001684.

备注/Memo

备注/Memo:
基金项目:国家重点研发计划(2017YFD0600304); 江苏高校优势学科建设工程资助项目(PAPD) 第一作者:陈佩珍(Pei_Jane001@163.com)。*通信作者:季孔庶(ksji32@163.com),教授。
更新日期/Last Update: 1900-01-01