[1]岳晋军,王 涛,彭镇华,等.圣音竹及其回复突变体笋期的碳氮代谢特征分析[J].南京林业大学学报(自然科学版),2018,42(01):060-66.[doi:10.3969/j.issn.1000-2006.201702034 ]
 YUE Jinjun,WANG Tao,PENG Zhenhua,et al.Physiological features of C and N metabolism during shoot elongation in Phyllostachys edulis f. tubaeformis and its reverse mutant[J].Journal of Nanjing Forestry University(Natural Science Edition),2018,42(01):060-66.[doi:10.3969/j.issn.1000-2006.201702034 ]
点击复制

圣音竹及其回复突变体笋期的碳氮代谢特征分析
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
42
期数:
2018年01期
页码:
060-66
栏目:
研究论文
出版日期:
2018-01-31

文章信息/Info

Title:
Physiological features of C and N metabolism during shoot elongation in Phyllostachys edulis f. tubaeformis and its reverse mutant
文章编号:
1000-2006(2018)01-0060-07
作者:
岳晋军12王 涛3彭镇华13李潞滨13*顾小平2袁金玲2吴晓丽2刘正娥2
1.国际竹藤中心,北京 100102; 2.中国林业科学研究院亚热带林业研究所,浙江 杭州 311400; 3.中国林业科学研究院林业研究所,北京 100091
Author(s):
YUE Jinjun12 WANG Tao3 PENG Zhenhua13 LI Lubin13* GU Xiaoping2 YUAN Jinling2 WU Xiaoli2LIU Zheng'e2
1. International Center for Bamboo and Rattan, Beijing 100102, China; 2.Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; 3. Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
关键词:
圣音竹 秆型变异 生理指标 碳氮代谢 回复突变体
Keywords:
Keywords:Phyllostachys edulis f. tubaeformis culm variation physiological feature C and N metabolism reverse mutant
分类号:
S722
DOI:
10.3969/j.issn.1000-2006.201702034
文献标志码:
A
摘要:
【目的】碳氮代谢是竹子节间伸长的重要生理活动,研究节间短缩的圣音竹及节长正常的回复突变体两者在碳氮代谢上的差异,从而揭示影响竹材利用率的主要性状——节间长度在代谢层面的调控机制。【方法】以圣音竹及其回复突变体节间快速伸长时期的竹笋为材料,对其笋体和笋箨不同部位的有关碳氮代谢主要物质及相关酶活性进行了测定。【结果】在笋体部位,圣音竹的蔗糖和果糖含量,以及酸性蔗糖转化酶活性显著低于其回复突变体,中性蔗糖转化酶活性则显著高于后者,而葡萄糖含量在两者间差别不大; 圣音竹的蛋白质含量、谷氨酸脱氢酶活性显著低于其回复突变体,铵态氮含量显著大于后者,硝态氮含量在两者间相差不大。在笋箨部位,多数指标差异不显著。【结论】从碳氮代谢的角度看,圣音竹笋体中蔗糖浓度降低和氮代谢异常可能是导致其节间短缩的原因之一。
Abstract:
【Objective】Internodal length is an important phenotypic parameter affecting the usage of bamboo timber in order to explore the mechanism of its growth.【Method】The physiological features of carbohydrate and nitrogen metabolism in shoots and sheaths were analyzed using Phyllostachys edulis f. tubaeformis and its reverse mutant as subjects of the study.【Result】The contents of sucrose, fructose and acid invertase activity were significantly lower, while neutral invertase activity was significantly higher in the shoots of Ph. edulis f. tubaeformis than that in its reverse mutant, and there was no significant difference in glucose content. Protein content and glutamate dehydrogenase activity were significantly lower, while ammonium nutrient content was significantly higher in the shoots of Ph. edulis f. tubaeformis than that in its reverse mutant, and there was no significant difference in nitrate nitrogen content. These characteristics of carbohydrate and nitrogen metabolism demonstrated no significant difference in sheaths.【Conclusion】Based on these results, the decrease in sucrose content and abnormality in nitrogen metabolism in the shoots were supposed to be reasons for internode shortening in Ph. edulis f.tubaeformis. This study investigated for the first time in physiological mechanism of internode shortening in Ph. edulis f. tubaeformis, thus providing a basis for further genomic studies.

参考文献/References:

[1] HANSON J, SMEEKENS S. Sugar perception and signaling—an update[J]. Current Opinion in Plant Biology, 2009, 12(5): 562-567. DOI:10.1016/j.pbi.2009.07.014.
[2] 白瑞华, 潘雁红, 石全太,等. 毛竹退笋的营养分析及不同时期营养成分的变化规律[J]. 竹子研究汇刊, 2011, 30(1):23-26. DOI:10.3969/j.issn.1000-6567.2011.01.005. BAI R H, PAN Y H,SHI Q T, et al. Nutrient component of the degraded bamboo shoots of Phyllostachys heterocycala var.pubenscens[J].Journal of Bamboo Research, 2011, 30(1):23-26.
[3] HE C Y, CUI K, ZHANG J G, et al. Next-generation sequencing-based mRNA and microRNA expression profiling analysis revealed pathways involved in the rapid growth of developing culms in Moso bamboo[J]. BMC Plant Biology, 2013, 13(1): 119. DOI:10.1186/1471-2229-13-119.
[4] CUI K, HE C Y, ZHANG J G, et al. Temporal and spatial profiling of internode elongation-associated protein expression in rapidly growing culms of bamboo[J]. Journal of Proteome Research, 2012, 11(4): 2492-2507. DOI:10.1021/pr2011878.
[5] CHIU W B, LIN CH, CHANG C J, et al. Molecular characterization and expression of four cDNAs encoding sucrose synthase from green bamboo Bambusa oldhamii[J]. New Phytologist, 2006, 170(1): 53-63. DOI:10.1111/j.1469-8137.2005.01638.x.
[6] PENG Z H, LU Y, LI L B, et al. The draft genome of the fast-growing non-timber forest species moso bamboo(Phyllostachys heterocycla)[J]. Nature Genetics, 2013, 45(4): 456-461. DOI:10.1038/ng.2569.
[7] 顾小平, 吴晓丽, 汪阳东. 毛竹材用林高产优化施肥与结构模型的建立[J]. 林业科学, 2004, 40(3): 96-101. DOI:10.11707/j.1001-7488.20040316. GU X P,WU X L,WANG Y D. The optimal models of high-yields with fertilization and the structure of Moso bamboo stands for culm-producing[J].Scientia Silvae Sinicae, 2004, 40(3): 96-101.
[8] 高志勤,傅懋毅.经营方式对毛竹林土壤肥力指数的影响[J].南京林业大学学报(自然科学版),2008,32(4):81-85. DOI:10.3969/j.jssn.1000-2006.2008.04.018. GAO Z Q,FU M Y. Effects of management styles on soil fertility index of different structure Phyllostachys edulis stands[J].Journal of Nanjing Forestry University(Natural Sciences Edition),2008,32(4):81-85.
[9] 王诗云.毛竹的三个新变型[J].广西植物,1984,4(4):319-320. WANG S Y. Three new forms of Phyllostahcys pubescens mazel[J].Guhaia, 1984,4(4):319-320.
[10] 赖广辉.竹亚科刚竹属一些种下变异类型分类地位的再认识[J].安徽农业科学,2012,40(8):4621-4625. DOI:10.3969/j.issn.0517-6611.2012.08.058. LAI G H. A reconsideration of taxonomic position of some infraspecific mutants in the Genus Phyllostachys(Bambusoideae)[J]. Journal of Anhui Agriculture Science, 2012,40(8):4621-4625.
[11] 李利军,孔红星,何云,等. 蔗汁中蔗糖含量的分光光度法测定[J]. 分析测试学报,2003,22(4):51-54. DOI:10.3969/j.issn.1004-4957.2003.04.015. LI L J,KONG H X, HE Y, et al. Spectrophotometric method for determination of sucrose content in sugarcane juice[J]. Journal of Instrumental Analysis, 2003, 22(4):51-54.
[12] 逯平杰,代容春,叶冰莹,等.高效液相色谱法测定甘蔗节间果糖、葡萄糖和蔗糖的含量[J]. 食品科学, 2011,32(2):198-200. LU P J,DAI R C,YE B Y,et al. HPLC determination of fructose,glucose and sucrose in sugarcane internode[J].Food Science, 2011,32(2):198-200.
[13] 赵智中,张上隆,徐昌杰,等. 蔗糖代谢相关酶在温州蜜柑果实糖积累中的作用[J]. 园艺学报,2001, 28(2): 112-118. DOI:10.3321/j.issn:0513-353X.2001.02.004. ZHAO Z Z,ZHANG S L, XU C J,et al.Roles of sucrose metabolizing emzymes in accumulation of sugars in Satsuma mandarin fruit[J].Acta Horticulturae Siniaca,2001,28(2):112-118.
[14] 周颖,樊荣,张建逵. 人参中可溶性蛋白质含量测定[J]. 辽宁中医药大学学报,2014(8):95-96. ZHOU Y, FAN R,ZHANG J K.Determination of soluble protein in Ginseng[J].Journal of Liaoning University of TCM, 2014(8):95-96.
[15] 吕伟仙,葛滢,吴建之,等. 植物中硝态氮、氨态氮、总氮测定方法的比较研究[J]. 光谱学与光谱分析,2004,24(2):204-206. DOI:10.3321/j.issn:1000-0593.2004.02.023. LV W X,GE Y,WU J Z,et al. Study on the method for the determination of nitic nitrogen ammoniaca nitrogen and total nitrogenin plant[J]. Spectroscopy and Spectral Analysis,2004,24(2):204-206.
[16] 李合生. 植物生理生化实验原理与技术[M]. 北京: 高等教育出版社,2000:123-128. LI H S.Principle and technology of plant physiological and biochemical experiments[M]. Beijing: Higher Education Press,2000:123-128.
[17] WANG L, LI X R, LIAN H, et al. Evidence that high activity of vacuolar invertase is required for cotton fiber and Arabidopsis root elongation through osmotic dependent and independent pathways, respectively[J]. Plant Physiology, 2010, 154(2): 744-756. DOI:10.1104/pp.110.162487.
[18] BARRATTD H,DERBYSHIRE P, FINDLAY K, et al. Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase[J]. Proceedings of the National Academy of Sciences, 2009, 106(31): 13124-13129. DOI:10.1073/pnas.0900689106.
[19] RUANY L, Y E J, YANG Y J, et al. Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat[J]. Molecular Plant, 2010, 3(6):942-955. DOI:10.1093/mp/ssq044.
[20] STITT M, MVLLER C, MATT P, et al. Steps towards an integrated view of nitrogen metabolism[J]. Journal of Experimental Botany, 2002, 53(370):959-970. DOI:10.1093/jexbot/53.370.959.
[21] BRITTO D T,KRONZUCKER H J. NH+4 toxicity in higher plants: a critical review[J]. Journal of Plant Physiology, 2002, 159(6): 567-584. DOI:10.1078/0176-1617-0774.
[22] TEMPLE S J, VANCE C P, STEPHEN GANTT J. Glutamate synthase and nitrogen assimilation[J]. Trends in Plant Science, 1998,3(2):51-56. DOI:10.1016/s1360-1385(97)01159-x.
[23] LAM H M, COSCHIGANO K T, OLIVEIRA I C, et al. The molecular-genetics of nitrogen assimilation into amino acids in higher plants[J]. Annual Review of Plant Biology, 1996, 47(1): 569-593. DOI:10.1146/annurev.arplant.47.1.569.
[24] 周芳纯. 竹林培育学[M]. 北京:中国林业出版社,1998. CHOU F C. Bamboo thremmatology[M].Beijing:Chinese Forestry Press,1998.
[25] 江雪,楼崇,袁娜,等.外源GA3对毛竹实生苗新分蘖竹株秆形与竹材纤维质量的影响[J].南京林业大学学报(自然科学版),2016,40(2):121-126. DOI:10.3969/j.issn.1000-2006.2016.02.020. JIANG X,LOU C,YUAN N,et al.Effects of exogenous GA3 on culm form and culm fiber quality of Phyllostachys edulis seedlings neonatal tiller[J].Journal of Nanjing Forestry University(Natural Sciences Edition),2016, 40(2):121-126.
[26] 吴晓宇,胡尚连,曹颖,等.慈竹CCoAOMT基因的克隆及生物信息学分析[J].南京林业大学学报(自然科学版),2012,36(3):17-22. DOI:10.3969/j.jssn.1000-2006.2012.03.005. WU X Y,HU S L,CAO Y,et al.Cloning of CCoAOMT gene in Neosinocalamus affinis and its bioinformatics analysis[J].Journal of Nanjing Forestry University(Natural Sciences Edition),2012,36(3):17-22.
[27] 甘小洪,陈凤,林树燕,等.慈竹不同变异类型的纤维形态研究[J].南京林业大学学报(自然科学版),2013,37(4):99-104. DOI:10.3969/j.issn.1000-2006.2013.04.019. GAN X H,CHEN F,LIN SH Y,et al.Fiber morphology of different variation types of Neosinocalamus affinis (Rendle)Keng f.[J].Journal of Nanjing Forestry University(Natural Sciences Edition),2013,37(4):99-104.
[28] 董丽娜. 毛竹秆茎高生长的发育解剖研究[D]. 南京:南京林业大学, 2007. DONG L N. Studies on developmental anatomy of elongated growth about bamboo culms[D]. Nanjing:Nanjing Forestry University,2007.
[29] CHANG W J,CHANG M J, CHANG S T, et al. Chemical composition and immunohistological variations of a growing bamboo shoot[J].Journal of Wood Chemistry and Technology, 2013, 33(2): 144-155. DOI:10.1080/02773813.2013.769114.
[30] WAN J C. Cell wall characteristics and gene expression of Dendriocalamus latiflorus shoot during different growth[D]. Taibei: National Taiwan University,2012.
[31] LALONDE S, TEGEDER M, THRONE'HOLS T M,et al. Phloem loading and unloading of sugars and amino acids[J]. Plant, Cell and Environment, 2003, 26(1): 37-56.DOI:10.1046/j.1365-3040.2003.00847.x.
[32] TERAO T, NAGATA K, MORINO K, et al. A gene controlling the number of primary rachis branches also controls the vascular bundle formation and hence is responsible to increase the harvest index and grain yield in rice[J]. Theoretical and Applied Genetics, 2010,120(5): 875-893. DOI:10.1007/s00122-009-1218-8.
[33] 于晓刚, 张文忠, 韩亚东,等. 粳稻颖果维管束结构粒位间差异及其与品质性状的关系[J].作物学报, 2010,36(7): 1198-1208. YU X G,ZHANG W Z,HAN Y D,et al. Vascular anatomical traits of caryopsis in different positions and its relationship with quality traits of Japonica rice[J]. Acta Agronomica Sinica,2010, 36(7): 1198-1208.
[34] KUNZ S, PESQUET E, KLECZKOWSKI LA. Functional dissection of sugar signals affecting gene expression in Arabidopsis thaliana[J].PLoS ONE, 2014, 9(6): e100312. DOI:10.1371/journal.pone.0100312.
[35] CHNG W B, BOU SLEIMAN M S, SCHÜPFER F, et al. Transforming growth factor β/activin signaling functions as a sugar-sensing feedback loop to regulate digestive enzyme expression[J]. Cell Reports, 2014,9(1): 336-348. DOI:10.1016/j.celrep.2014.08.064.
[36] LOQUÉ D, VON WIRÉN N. Regulatory levels for the transport of ammonium in plant roots[J]. Journal of Experimental Botany, 2004,55(401): 1293-1305. DOI:10.1093/jxb/erh147.
[37] GAZZARRINI S, LEJAY L, GOJON A,et al. Three functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis roots[J]. Plant Cell, 1999,11(5): 937-948. DOI:10.1105/tpc.11.5.937.

备注/Memo

备注/Memo:
基金项目:浙江省林木新品种选育重大科技专项(2016C02056-8); 浙江省公益技术研究农业项目(2015C32012); 中央级公益性科研院所基本科研业务费专项资金项目(RISF2013004) 第一作者:岳晋军(yuejinjun@163.com),博士生。*通信作者:李潞滨(lilubin@126.com),研究员。
更新日期/Last Update: 2018-03-30