[1]张银荣,兰再平*,彭晶晶,等.地面滴灌龙脑香樟人工林的土壤水分运动规律[J].南京林业大学学报(自然科学版),2018,42(01):120-126.[doi:10.3969/j.issn.1000-2006.201703062 ]
 ZHANG Yinrong,LAN Zaiping*,PENG Jingjing,et al.Soil water movement in Cinnamomum camphora plantation under drip irrigation[J].Journal of Nanjing Forestry University(Natural Science Edition),2018,42(01):120-126.[doi:10.3969/j.issn.1000-2006.201703062 ]
点击复制

地面滴灌龙脑香樟人工林的土壤水分运动规律
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
42
期数:
2018年01期
页码:
120-126
栏目:
研究论文
出版日期:
2018-01-31

文章信息/Info

Title:
Soil water movement in Cinnamomum camphora plantation under drip irrigation
文章编号:
1000-2006(2018)01-0120-07
作者:
张银荣1兰再平1*彭晶晶1秘洪雷1马 鑫1贺 新1楼 杰2
1.中国林业科学研究院世界银行项目办公室,北京 100091; 2.浙江龙香御林林业科技开发有限公司, 浙江 杭州 310026
Author(s):
ZHANG Yinrong1 LAN Zaiping1* PENG Jingjing1 BI Honglei1 MA Xin1 HE Xin 1 LOU Jie2
1.World Bank Loan Project Office, Chinese Academy of Forestry,Beijing 100091,China; 2.Zhejiang Longxiangyulin Forestry Science and Technology Development Limited Comporation, Hangzhou 310026,China
关键词:
滴灌 龙脑香樟人工林 土壤湿润锋 土壤湿润体 土壤体积含水量 田间持水量
Keywords:
Keywords:drip irrigation Cinnamomum camphora plantation soil wetting front shape of wetting soil water content(SVWC) field water capacity(FWC)
分类号:
S725.7
DOI:
10.3969/j.issn.1000-2006.201703062
文献标志码:
A
摘要:
【目的】研究在滴头流量恒定、不同滴灌时长下香樟人工林地黄红壤中水分的运动规律。【方法】以浙江余杭地面滴灌方式栽培的1年生龙脑香樟(Cinnamonmum camphora)人工林为对象,通过开挖土壤剖面,布设土壤湿度传感器,测定不同滴灌时长和停灌后土壤湿润锋的运移、土壤体积含水量的变化,以及最终形成的土壤湿润体的形态。【结果】①持续滴灌1~6 h,土壤湿润锋在垂直方向和水平方向上的转移速率均与入渗时间有极显著的幂函数关系,R2值均在0.97以上,各滴灌时长的湿润锋最终水平运移距离最大值均在地表; ②不同滴灌时长条件下,停灌后土壤湿润锋在垂直方向和水平方向上继续运移1~2 h,土壤湿润体的形状近似从1个平卧的圆锥体向直立的半椭球体转变; ③持续滴灌6 h过程中,20和40 cm土层各测点土壤体积含水量都呈现先急速后缓慢增长到趋于平稳的变化规律,分别滴灌1.5、3.0、6.0 h可使20 cm土层的点源正下方、距点源水平20 cm和30 cm的含水量达到田间持水量水平以上; 分别滴灌2.0和4.0 h可使40 cm土层点源正下方、距点源水平20 cm的含水量达到田间持水量水平以上; 停灌后48 h内各测点含水量均保持在田间持水量的70%以上。【结论】对于龙脑香樟人工林的栽培,地面滴灌的合理设计是滴头流量应为2 L/h,滴头间距应为40 cm; 容器苗造林应在生根期每次滴灌2~3 h,高生长期每次滴灌4~5 h; 灌溉应适时适量,以保证林分生长需要。
Abstract:
【Objective】 The objective of this study was to investigate the effects of different drip irrigation time on the patterns of soil water movement in yellow red soil for 1 year in Cinnamomum camphora plantation under drip irrigation in Yuhang, Zhejiang Province in a subtropical region.【Method】 We measured the movement process of the soil wetting front, soil volumetic water content(SVWC), and the shape of the wetting soil after stopping drip irrigation by observing the soil profile in the field and analyzing soil moisture sensor data with a constant flow rate of 2 L/h.【Result】①The advancing rate of the soil wetting front in both horizontal and vertical directions had an extremely significant power function relationship with infiltration time from continuous drip irrigation of 1-6 h, and the R2 values were all above 0.97, and the final movement distance of the soil wetting front for different drip irrigation time in the horizontal direction in various soil levels all were on the surface of the soil. ② Movement duration of the soil wetting front after stopping different drip irrigation time were 1-2 h, and the shape of the wetting soil was similar to that of the hypothesized conicalness into a vertical semi-ellipsoid. ③During continuous drip irrigation of 6 h, the changing process of SVWC at various testing locations at both 20 and 40 cm was monitored. Water had a tendency of rapidly increasing, then slowly increasing, and finally remaining stable after drip irrigation of 1.5, 3.0, 6.0 h, respectively. The SVWC increased over levels of the field water capacity(FWC)at testing locations of 0, 20 and 30 cm from the point source horizontally in soil at 20 cm depth, after drip irrigation of 2.0 and 4.0 h, respectively. The SVWC increased over levels of the FWC at testing locations of 0 and 20 cm from the point source horizontally in soil at 40 cm depth, and the SVWC remained over 70% FWC in 48 h after stopping irrigation at various testing locations at both 20 and 40 cm.【Conclusion】Based on the study of the Cinnamomum camphora plantation under drip irrigation, the flow rate of 2 L/h was reasonable, and the drop of space designed to 40 cm was better. For planting container seedlings, drip irrigation of 2-3 h is needed in the early rooting period and 4-5 h in the late growing period. Irrigation should be timely and adequate to assure stand growth needs.

参考文献/References:

[1] 赵喜云.国内外滴灌技术的发展及应用[J].山西水利,2009,25(5):34-35. DOI:10.3969/j.issn.1004-7042.2009.05.019. ZHAO X Y. Development and application of drop irrigation technology in domestic and international[J]. Shanxi Water Resources, 2009,25(5):34-35.
[2] 张志新.滴灌工程规划设计原理与应用[M].北京:中国水利水电出版社,2007:5-6. ZHANG Z X. Principles and application of drip irrigation project planning and design[M]. Beijing: China Water Power Press, 2007:5-6.
[3] 张亚哲,申建梅,王建中.地面滴灌技术的研究现状与发展[J].农业环境与发展,2007,24(1):20-26. DOI:10.3969/j.issn.1005-4944.2007.01.007. ZHANG Y Z, SHEN J M, WANG J Z. The research status and development of drip irrigation technology [J].Agro-Environment & Development, 2007,24(1):20-26.
[4] SHRIVE S C, MC BRIDE R A, GORDON A M. Photosynthetic and growth responses of two broad-leaf tree species to irrigation with municipal landfill leachate[J]. Environ Qual, 1994,23(3):534-542.
[5] 韦艳葵,贾黎明,王玲,等.地下滴灌条件下杨树速生丰产林林木根系生长特性[J].北京林业大学学报,2007,29(2):34-41. DOI:10.3321/j.issn:1000-1522.2007.02.006. WEI Y K, JIA L M, WANG L, et al. Characteristics of root growth in fast-growing and high-yield poplar plantations under subsurface drip irrigation[J]. Journal of Beijing Forestry University, 2007,29(2):34-41.
[6] 傅建平,兰再平,孙尚伟,等.滴灌条件下杨树人工林土壤的水分运移[J].林业科学,2013,49(6):25-29. DOI:10.11707/j.1001-7488.20130604. FU J P, LAN Z P, SUN S W, et al. Soil water movement in a poplar plantation under drip irrigation[J]. Scientia Silvae Sinicae, 2013,49(6):25-29.
[7] 贺勇,兰再平,孙尚伟,等.滴灌施肥条件下107杨幼林N、P、K养分吸收量与施肥量研究[J].林业科学研究,2015,28(3):426-430. DOI:10.3969/j.issn.1001-1498.2015.03.019. HE Y, LAN Z P, SUN S W, et al. Study on N, P, and K uptake and fertilization of young ‘107' poplar clone with drip irrigation[J]. Forest Research, 2015,28(3):426-430.
[8] NAKAYAMA F S, BUCKS D A. Trickle irrigation for crop production: design, operation and management[M]. Amsterdam: Elsevier Science Publishers, 1986.
[9] 王平,胡笑涛,王文娥.不同湿润比下滴灌土壤入渗特性模拟试验研究[J].干旱地区农业研究,2016,34(4):6-11. DOI:10.7606/j.issn.1000-7601.2016.04.02. WANG P, HU X T, WANG W E. Simulation of soil infiltration characteristics under different wetted soil percentage[J]. Agricultural Research in the Arid Areas, 2016,34(4):6-11.
[10] 刘雪芹,范兴科,马甜.滴灌条件下砂壤土水分运动规律研究[J].灌溉排水学报,2006,25(3):56-59.DOI: 10.3969/j.issn.1672-3317.2006.03.015. LIU X Q, FAN X K, MA T. The laws of soil water movement under the drip irrigation[J]. Journal of Irrigation and Drainage, 2006, 25(3):56-59.
[11] 刘宏伟,高菲,余钟波,等.湿润地区坡面土壤含水率时空变异性研究[J].水资源保护,2016,32(5):17-23. LIU H W, GAO F, YU Z B, et al. Study on temporal-spatial variability of soil moisture content on hillslope in a humid area[J]. Water Resources Protection, 2016, 35(5):17-23.
[12] 卢俊寰,汪有科.滴灌土壤湿润体特性室外试验研究[J].中国农村水利水电,2012(3):1-6,11. LU J H, WANG Y K. Experimental research on characteristics of wetted volume in outdoor experiment under drip irrigations[J].China Rural Water and Hydropower, 2012(3):1-6,11.
[13] 赵颖娜,汪有科,马理辉,等.不同流量对滴灌土壤湿润体特征的影响[J].干旱地区农业研究,2010,28(4):30-34. ZHAO Y N, WANG Y K, MA L H, et al. Effect of different emitter discharge on soil moisture characteristic value under drip irrigation[J].Agricultural Research in the Arid Areas, 2010,28(4):30-34.
[14] GUPTA A D, BABEL M S, ASHRAI S. Effect of soil texture on the emission characteristics of porous clay pipe for subsurface irrigation[J]. Irrigation Science, 2009(27):201-208. DOI: 10.1007/s00271-008-0129-9.
[15] 张志刚,李宏,李疆,等.地表滴灌条件下滴头流量对土壤水分入渗-再分布过程的影响[J].干旱地区农业研究,2016,34(2):224-231. DOI:10.7606/j.issn.1000-7601.2016.02.36. ZHANG Z G, LI H, LI J, et al. Effects of different dripper discharges on soil water infiltration-redistribution under drip irrigation[J]. Agricultural Research in the Arid Areas, 2016, 34(2):224-231.
[16] 陈渠昌,吴忠渤,佘国英,等.滴灌条件下沙地土壤水分分布与运移规律[J].灌溉排水学报,1999,18(1):29-32,39. CHEN Q C, WU Z B, SHE G Y, et al. Research on distribution and movement rules of arid sand soil water under drip irrigation[J].Journal of Irrigation and Drainage, 1999,18(1):29-32,39.
[17] 叶镜中,姜志林.苏南丘陵区杉木根系的生态特性[J].南京林业大学学报(自然科学版),1980,4(1):43-51. YE J Z, JIANG Z L. Study on ecological characteristic of root of Cunninghamia lanceolata, hook in the hilly land of South Jiangsu[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 1980,4(1):43-51.
[18] 张振华,杨润亚,蔡焕杰,等.土壤质地、密度及供水方式对点源人渗特性的影响[J].农业系统科学与综合研究,2004,20(2):81-85. ZHANG Z H, YANG R Y, CAI H J, et al. The influence of soil texture bulk density and water applied methods on point source infiltration[J]. System Sciences and Comprehensive Studies in Agriculture, 2004,20(2):81-85.
[19] 侯梦媛,杨再强,张曼义.水分胁迫对设施番茄结果期叶片衰老特性和根系活力的影响[J].北方园艺,2017(1):52-57. HOU M Y, YANG Z Q, ZHANG M Y. Effects of water stress on characteristics of leaf senescence and root activity in fruiting period of facilities of tomatoes[J]. Northern Horticulture, 2017(1):52-57.
[20] 景茂,曹福亮,汪贵斌,等.土壤水分含量对银杏生长及生物量分配的影响[J].南京林业大学学报(自然科学版), 2005,29(3):5-8. DOI:10.3969/j.issn.1000-2006.2005.03.002. JING M, CAO F L, WANG G B, et al. The effects of soil water stress on growth and biomass allocation of Ginkgo biloba[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2005,29(3):5-8.

备注/Memo

备注/Memo:
基金项目:中国林科院与浙江龙番御林林业科技开发有限公司院企合作项目(2016043001) 第一作者:张银荣(1552465149@qq.com)。*通信作者:兰再平(wboffice@caf.ac.cn),研究员。
更新日期/Last Update: 2018-03-30