[1]解雅麟,王海燕*,雷相东.基于3-PG模型的长白落叶松人工林生长和生物量模拟[J].南京林业大学学报(自然科学版),2018,42(01):141-148.[doi:10.3969/j.issn.1000-2006.201611003 ]
 XIE Yalin,WANG Haiyan*,LEI Xiangdong.Growth and biomass simulation of Larix olgensis plantations based on 3-PG model[J].Journal of Nanjing Forestry University(Natural Science Edition),2018,42(01):141-148.[doi:10.3969/j.issn.1000-2006.201611003 ]
点击复制

基于3-PG模型的长白落叶松人工林生长和生物量模拟
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
42
期数:
2018年01期
页码:
141-148
栏目:
研究论文
出版日期:
2018-01-31

文章信息/Info

Title:
Growth and biomass simulation of Larix olgensis plantations based on 3-PG model
文章编号:
1000-2006(2018)01-0141-08
作者:
解雅麟1王海燕1*雷相东2
1.北京林业大学林学院,北京 100083; 2.中国林业科学研究院资源信息研究所,北京 100091
Author(s):
XIE Yalin1WANG Haiyan1*LEI Xiangdong2
1.College of Forestry, Beijing Forestry University, Beijing 100083, China; 2.Institute of Forest Resource and Information, CAF, Beijing 100091, China
关键词:
【目的】模拟预测森林经营及气候变化下长白落叶松人工林林分生长及生物量变化以期为长白落叶松人工林经营管理提供科学依据。【方法】以吉林省和龙、舒兰、通化、汪清、长春林区内15块长白落叶松人工林固定样地为对象基于气候、土壤、林分生长等观测数据运用3-PG模型模拟了研究区内长白落叶松的生物量及其分配并模拟了CO2浓度升高对生物量的影响。【结果】3-PG模型能够较好地模拟林分蓄积和干生物量的生长变化除叶生物量外(R2 = 0.39)各指标的预测值与实际值的相关
Keywords:
Keywords:Larix olgensis 3-PG model biomass stand growth
分类号:
S757
DOI:
10.3969/j.issn.1000-2006.201611003
文献标志码:
A
摘要:
【目的】模拟预测森林经营及气候变化下长白落叶松人工林林分生长及生物量变化,以期为长白落叶松人工林经营管理提供科学依据。【方法】以吉林省和龙、舒兰、通化、汪清、长春林区内15块长白落叶松人工林固定样地为对象,基于气候、土壤、林分生长等观测数据,运用3-PG模型模拟了研究区内长白落叶松的生物量及其分配,并模拟了CO2浓度升高对生物量的影响。【结果】3-PG模型能够较好地模拟林分蓄积和干生物量的生长变化,除叶生物量外(R2 = 0.39),各指标的预测值与实际值的相关性较高(R2在0.62~0.86之间),平均相对误差和相对均方根误差均小于15%。参数敏感性分析表明:土壤肥力等级和生物量分配参数是该模型的关键参数。研究还发现长白落叶松人工林的生物量随CO2浓度升高而增加。【结论】3-PG模型可以用于长白落叶松人工林的生长模拟。
Abstract:
【Objective】We aimed to simulate the stand growth and biomass changes of Larix olgensis plantations with forest management under climate change. 【Method】Fifteen permanent sample plots of L. olgensis plantations located at Helong, Shulan, Tonghua, Wangqing and Changchun, Jilin Province, were selected to simulate stand biomass and its allocation by integrating 3-PG model with climate, soil and stand growth observations. Moreover, the effect of elevated CO2 concentration on biomass allocation was simulated. 【Result】With the exception of leaf biomass(R2 = 0.39), the 3-PG model could well simulate the trend of volume and stem biomass, with R2 between predicted and observed values ranging from 0.62 to 0.86. In addition, both the mean relative errors and the relative root mean square errors were less than 15%. Parameter sensitivity analysis showed that the soil fertility rating and biomass allocation are the key parameters of the model. In addition, we found that the biomass allocation increased with increasing CO2 concentrations. 【Conclusion】Therefore, the 3-PG model can be used to simulate the growth of L. olgensis plantations.

参考文献/References:

[1] 吴正方,靳英华,刘吉平,等. 东北地区植被分布全球气候变化区域响应[J]. 地理科学, 2003, 23(5): 564-570. DOI:10.3969/j.issn.1000-0690.2003.05.009. WU Z F, JIN Y H, LIU J P, et al. Regional responses of plants distribution under climate change in northeastern China[J]. Chinese Geographical Science, 2003, 23(5): 564-570.
[2] 祝燕,李国雷,李庆梅,等. 持续供氮对长白落叶松播种苗生长及抗寒性的影响[J]. 南京林业大学学报(自然科学版), 2013, 37(1): 44-48. DOI:10.3969/j.jssn.1000-2006.2013.01.007. ZHU Y, LI G L, LI Q M, et al. Influence of continually supplementing nitrogen on the quality of Larix olgensis seedlings[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2013, 37(1): 44-48.
[3] 冯玉龙,王丽华,敖红,等. 长白落叶松生理生态特性的CO2响应及意义[J]. 植物研究, 1999,19(1): 53-59. FENG Y L, WANG L H, AO H,et al. CO2 responses of physiological ecology characteristics in Larix olgensis Henry and its significance[J]. Bulletin of Botanical Research, 1999, 19(1): 53-59.
[4] 董金平. 长白落叶松人工栽培技术[J]. 黑龙江科技信息, 2012(16): 220. DOI:10.3969/j.issn.1673-1328.2012.16.233. DONG J P. Artificial cultivation techniques of Larix olgensis[J]. Heilongjiang Science and Technology Information, 2012(16): 220.
[5] 郑金萍,范春楠,郭忠玲,等. 长白落叶松人工林细根生物量及其动态研究[J]. 南京林业大学学报(自然科学版), 2014, 38(2): 175-179. DOI:10.3969/j.issn.1000-2006.2014.02.034. ZHENG J P, FAN C N, GUO Z L, et al. Fine roots biomass and its dynamics of Larix olgensis plantation[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2014, 38(2): 175-179.
[6] 杨安礼,刘然秀,朱敏,等. 落叶松枯梢病病害与环境因子关系及控制[J]. 北京农业, 2013(33): 114. DOI:10.3969/j.issn.1000-6966.2013.33.090. YANG A L, LIU R X, ZHU M,et al. Relationships between environmental factors and withered tip disease control of Larix olgensis[J]. Beijing Agriculture, 2013(33): 114.
[7] 郭孝玉. 长白落叶松人工林树冠结构及生长模型研究[D]. 北京:北京林业大学, 2013. GUO X Y. Crown structure and growth model for Larix olgensis plantation[D]. Beijing: Beijing Forestry University, 2013.
[8] 姜红英,谷加存,邱俊,等. 2004—2008年落叶松人工林细根生产和死亡的季节动态[J]. 应用生态学报, 2010,21(10): 2465-2471. JIANG H Y, GU J C, QIU J,et al. Seasonal variations of fine root production and mortality in Larix gmelinii plantation in 2004-2008[J]. Chinese Journal of Applied Ecology, 2010, 21(10): 2465-2471.
[9] 余黎. 气候敏感的长白落叶松人工林全林整体模型研究[D].北京:中国林业科学研究院, 2014. YU L. Climate-sensitive integrated stand growth model of Changbai larch(Larix olgensis)plantations[D]. Beijing: Chinese Academy of Forestry, 2014.
[10] 常敏. 基于实测数据和经验模型的单木可视化研究[D]. 北京:北京林业大学, 2005. CHANG M. Studies on tree visualization based on observed morphological structural data and empirical growth models[D]. Beijing: Beijing Forestry University, 2005.
[11] 邓晓华,张广福,张怡春,等. 长白落叶松人工林全林分生长模型的研究[J]. 林业科技, 2003,28(1): 10-12. DOI:10.3969/j.issn.1001-9499.2003.01.003. DENG X H, ZHANG G F, ZHANG Y C, et al. Study on all stand growth model of Larix olgensis[J]. Forestry Science and Technology, 2003, 28(1): 10-12.
[12] 郭孝玉,孙玉军,欧阳勋志. 长白落叶松同龄林树冠率模型构建[R]. 昆明:第十六届中国科协年会——森林培育技术创新与特色资源产业发展学术研讨会:2014. GUO X Y, SUN Y J, OUYANG X Z. Modeling crown ratio in even-aged stands of Larix olgensis[R]. Kunming: The 16th Annual Meeting of China Association for Science and Technology, 2014.
[13] 郎奎建,胡光,郝锦莹,等. 人工林枯损动态模型及其规律分析[J]. 东北林业大学学报, 1996,24(3): 66-73. LANG K J, HU G, HAO J Y,et al. The study on mortality dynamic model and its regularity of plantation[J]. Journal of Northeast Forestry University, 1996, 24(3): 66-73.
[14] FORRESTER D I, TANG X. Analysing the spatial and temporal dynamics of species interactions in mixed-species forests and the effects of stand density using the 3-PG model[J]. Ecological Modelling, 2016, 319: 233-254. DOI:10.1016/j.ecolmodel.2015.07.010.
[15] 孙志虎. 长白落叶松人工用材林长期生产力维持的研究[D]. 哈尔滨:东北林业大学, 2005. SUN Z H. On the long-term productivity maintenance of monoculture olga Hay larch timber forest in Northeastern China[D]. Harbin: Journal of Northeast Forestry University, 2005.
[16] 何丽鸿,王海燕,雷相东. 基于BIOME-BGC模型的长白落叶松林净初级生产力模拟参数敏感性[J]. 应用生态学报, 2016,27(2): 412-420. DOI:10.13287/j.1001-9332.201602.023. HE L H, WANG H Y, LEI X D. Parameter sensitivity analysis of simulating net primary productivity of Larix olgensis forest based on BIOME-BGC model[J]. Chinese Journal of Applied Ecology, 2016, 27(2): 412-420.
[17] SANDS P J, LANDSBERG J J. Parameterisation of 3-PG for plantation grown Eucalyptus globulus[J]. Forest Ecology and Management, 2002, 163(1/2/3): 273-292. DOI:10.1016/s0378-1127(01)00586-2.
[18] COOPS N C, WARING R H. A process-based approach to estimate Lodgepole pin(Pinus contorta Dougl.)distribution in the Pacific Northwest under climate change[J]. Climatic Change, 2011, 105(1/2): 313-328. DOI:10.1007/s10584-010-9861-2.
[19] ESPREY L J, SAND P J, SMITH C W. Understanding 3-PG using a sensitivity analysis[J]. Forest Ecology and Management, 2004, 193(1/2): 235-250. DOI:10.1016/j.foreco.2004.01.032.
[20] GONZALEZ-BENECKE C A, JOKELA E J, CROPPER W P, et al. Parameterization of the 3-PG model for Pinus elliottii stands using alternative methods to estimate fertility rating, biomass partitioning and canopy closure[J]. Forest Ecology and Management, 2014, 327: 55-75. DOI:10.1016/j.foreco.2014.04.030.
[21] PÉREZ-CRUZADO C, MUñOZ-SáEZ F, BASURCO F, et al. Combining empirical models and the process-based model 3-PG to predict Eucalyptus nitens plantations growth in Spain[J]. Forest Ecology and Management, 2011, 262(6): 1067-1077. DOI:10.1016/j.foreco.2011.05.045.
[22] POTITHEP S, YASUOKA Y. Application of the 3-PG model for gross primary productivity estimation in deciduous broadleaf forests: a study area in Japan[J]. Forests, 2011, 2(4): 590-609. DOI:10.3390/f2020590.
[23] 花利忠,江希钿,贺秀斌. 3-PG模型在华南尾叶桉人工林的应用研究[J]. 北京林业大学学报, 2007,29(2): 100-104. DOI:10.3321/j.issn:1000-1522.2007.02.017. HUA L Z, JIANG X D, HE X B. Application of 3-PG model in Eucalyptus urophylla plantations of southern China[J]. Journal of Beijing Forestry University, 2007, 29(2): 100-104.
[24] 刘坤,曹林,汪贵斌,等. 基于3-PG模型的杉木人工林各器官生物量和LAI估算[J]. 西北农林科技大学学报(自然科学版), 2015,43(9): 57-64. DOI:10.13207/j.cnki.jnwafu.2015.09.009. LIU K, CAO L, WANG G B,et al. Estimating biomass components and LAI of Chinese fir plantation based on 3-PG model[J]. Journal of Northwest Agriculture and Forestry University(Natural Science), 2015, 43(9): 57-64.
[25] 赵梅芳. 基于3-PG机理模型的杉木林碳固定及蒸散量模拟研究[D].长沙:中南林业科技大学, 2008. ZHAO M F. Simulating Chinese fir plantation carbon storage and evapotranspiration using the 3-PG model[D]. Changsha: Central South University of Forestry and Technology, 2008.
[26] 朱智强,蒋菊生. 3-PG生长模型及其在橡胶树栽培领域的应用[J]. 热带农业科学, 2010,30(7): 4-7. DOI:10.3969/j.issn.1009-2196.2010.07.002. ZHU Z Q, JIANG J S. 3-PG growth model and its application in rubber cultivation[J]. Chinese Journal of Tropical Agriculture, 2010, 30(7): 4-7.
[27] 符利勇,唐守正,张会儒,等. 东北地区两个主要树种地上生物量通用方程构建[J]. 生态学报, 2015,35(1): 150-157. DOI:10.5846/stxb201403310601. FU L Y, TANG S Z, ZHANG H R, et al. Generalized above-ground biomass equations for two main species in northeast China[J]. Acta Ecologica Sinica, 2015, 35(1): 150-157.
[28] 唐守正,张会儒,胥辉. 相容性生物量模型的建立及其估计方法研究[J]. 林业科学, 2000,36(S1): 19-27. DOI::10.11707/j.1001-7488.2000S103. TANG S Z, ZHANG H R, XU H. Study on establish and estimate method of compatible biomass model[J]. Scientia Silvae Sinicae, 2000,36(S1): 19-27.
[29] 陈传国,朱俊凤.东北主要林木生物量手册[M].北京:中国林业出版社,1989:1-528. CHEN C G, ZHU J F. Biomass tables for main tree species in Northeast China[M]. Beijing: Chinese Forestry Press, 1989:1-528.
[30] LANDSBERG J J, WARING R H. A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning[J]. Forest Ecology and Management, 1997, 95(3): 209-228. DOI:10.1016/s0378-1127(97)00026-1.
[31] 刘俊稚. 几种典型植物对大气CO2浓度升高的生理和病理响应研究[D]. 杭州:浙江大学, 2010. LIU J Z. Study on eco-physiological and pathological responses of several typical plant species to elevated atmospheric CO2[D]. Hangzhou: Zhejiang University, 2010.
[32] XIE Y L, WANG H Y, LEI X D. Application of the 3-PG model to predict growth of Larix olgensis plantations in Northeastern China[J]. Forest Ecology and Management, 2017, 406: 208-218. DOI:10.1016/j.foreco.2017.10.018
[33] 冯玉龙,敖红,王文章,等. 长白落叶松净光合速率和呼吸速率的日变化及时空影响[J]. 河北大学学报(自然科学版), 1998,18(2): 81-86. FENG Y L, AO H, WANG W Z,et al. Diurnal variations of net photosynthetic rate and respiration rate in Larix olgensis Henry and effect of season and position[J]. Journal of Hebei University, 1998, 18(2): 81-86.
[34] SANDS P J. Adaptation of 3-PG to novel species:guidelines for data collection and parameter assignment[J]. CRC for Sustainable Production Forestry, 2004.
[35] FEIKEMA P M, MORRIS J D, BEVERLY C R, et al. Validation of plantation transpiration in south-eastern Australia estimated using the 3-PG forest growth model[J]. Forest Ecology and Management, 2010, 260(5): 663-678. DOI:10.1016/j.foreco.2010.05.022.
[36] 余黎,雷相东,王雅志,等. 基于广义可加模型的气候对单木胸径生长的影响研究[J]. 北京林业大学学报, 2014,36(5): 22-32. DOI:10.13332/j.cnki.jbfu.2014.05.007. YU L, LEI X D, WANG Y Z,et al. Impact of climate on individual tree radial growth based on generalized additive model[J]. Journal of Beijing Forestry University, 2014, 36(5): 22-32.
[37] RÖZER T, LEUCHNER M, NUNN A J. Simulating stand climate, phenology, and photosynthesis of a forest stand with a process-based growth model[J]. International Journal of Biometeorology, 2010, 54(4): 449-464. DOI:10.1007/s00484-009-0298-0.
[38] 何丽鸿,王海燕,王璐,等. 长白落叶松林生态系统净初级生产力对气候变化的响应[J]. 北京林业大学学报, 2015,37(9): 28-36. DOI:10.13332/j.1000-1522.20140439. HE L H, WANG H Y, WANG L, et al. Response of net primary productivity of forest ecosystem to climate change[J].Journal of Beijing Forestry University, 2015, 37(9): 28-36.
[39] 王秀云. 不同年龄长白落叶松人工林碳储量分布特征[D]. 北京:北京林业大学, 2011. WANG X Y. Distribution of carbon storage for Larix olgensis plantation of different stand age[D]. Beijing: Beijing Forestry University, 2011.
[40] 轩志龙,张启昌,葛丽丽,等. 长白落叶松人工林生物量的结构与分布[J]. 林业资源管理, 2013(1): 53-57. DOI:10.3969/j.issn.1002-6622.2013.01.011. XUAN Z L, ZHANG Q C, GE L L, et al. Biomass structure and distribution of Korean larch plantations[J]. Forest Resources Management, 2013(1): 53-57.
[41] DYE P J, JACOBS S, DREW D. Verification of 3-PG growth and water-use predictions in twelve Eucalyptus plantation stands in Zululand, South Africa[J]. Forest Ecology and Management, 2004, 193(1/2): 197-218. DOI:10.1016/j.foreco.2004.01.030.
[42] AMICHEV B Y, JOHNSTON M, VAN REES K C J. Hybrid poplar growth in bioenergy production systems: biomass prediction with a simple process-based model(3-PG)[J]. Biomass and Bioenergy, 2010, 34(5): 687-702. DOI:10.1016/j.biombioe.2010.01.012.
[43] LU Y, COOPS N, WANG T, et al. A process-based approach to estimate Chinese fir(Cunninghamia lanceolata)distribution and productivity in Southern China under climate change[J]. Forests, 2015, 6(2): 360-379. DOI:10.3390/f6020360.
[44] RODRíGUEZ-SUáREZ J A, SOTO B, IGLESIAS M L, et al. Application of the 3-PG forest growth model to a Eucalyptus globulus plantation in Northwest Spain[J]. European Journal of Forest Research, 2010, 129(4): 573-583. DOI:10.1007/s10342-010-0355-6.
[45] 黄华国. 应用过程模型3-PG模拟青海云杉生长[EB/OL].(2010-04-27)
[2016-5-18]. http://www.paper.edu.cn. HUANG H G. Application of the process-based forest growth model 3-PG to Picea crassifolia stand [EB/OL].(2010-04-27)
[2016-5-18]. http://www.paper.edu.cn.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金项目(31270679) 第一作者:解雅麟(xieyalin93@163.com)。*通信作者:王海燕(haiyanwang72@aliyun.com),副教授,博士。
更新日期/Last Update: 2018-03-30