[1]蒋 乐,刘 勇*,李国雷,等.短日照处理诱导油松容器苗针叶差异表达蛋白质的功能分析[J].南京林业大学学报(自然科学版),2018,42(02):017.[doi:10.3969/j.issn.1000-2006.201605005]
 JIANG Le,LIU Yong*,LI Guolei,et al.Analysis of differentially expressed protein functions of Pinus tabulaeformisseedling leaves induced by short-day treatment[J].Journal of Nanjing Forestry University(Natural Science Edition),2018,42(02):017.[doi:10.3969/j.issn.1000-2006.201605005]
点击复制

短日照处理诱导油松容器苗针叶差异表达蛋白质的功能分析
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
42
期数:
2018年02期
页码:
017
栏目:
研究论文
出版日期:
2018-03-20

文章信息/Info

Title:
Analysis of differentially expressed protein functions of Pinus tabulaeformis seedling leaves induced by short-day treatment
文章编号:
1000-2006(2018)02-0017-08
作者:
蒋 乐刘 勇*李国雷林 平史文辉万芳芳
省部共建森林培育与保护教育部重点实验室,北京林业大学林学院,北京 100083
Author(s):
JIANG Le LIU Yong* LI Guolei LIN Ping SHI Wenhui WAN Fangfang
Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083,China
关键词:
短日照处理 油松 蛋白质组学 基础代谢 抗逆性
Keywords:
Keywords:short-day treatment Pinus tabulaeformis Carr. proteomics basic metabolism stress resistance
分类号:
S718.52
DOI:
10.3969/j.issn.1000-2006.201605005
文献标志码:
A
摘要:
【目的】基于蛋白质水平探讨短日照处理调控油松(Pinus tabulaeformis)容器苗基础代谢和抗逆性机理的研究,完善油松容器苗的育苗和造林技术,为短日照处理育苗技术在我国北方地区困难立地造林中推广应用提供理论依据。【方法】以经日照长度为10 h、持续3 周短日照处理的油松容器苗针叶为研究对象,采用改良的酚法提取针叶蛋白。应用双向电泳结合二级质谱分析的蛋白质组学技术,研究短日照处理诱导油松容器苗针叶蛋白质表达的变化,分析差异表达蛋白质的鉴定和功能。【结果】成功获取5个短日照处理诱导表达差异显著的蛋白质,上调表达的是叶绿体放氧增强蛋白1(oxygen-evolving enhancer protein 1, OEE1)(蛋白点404)、甘油醛-3-磷酸脱氢酶(glyceraldehyde-3-phosphate dehydrogenase, GAPDH)(蛋白点539)、延伸因子-Tu(elongation factor-Tu, EF-Tu)(蛋白点654)、核酮糖-1,5-二磷酸羧化酶/加氧酶活化酶(ribulose bisphosphate carboxylase/oxygenase activase, RCA)(蛋白点681); 下调表达的是磷酸甘油酸激酶1(phosphoglycerate kinase 1, PGK1)(蛋白点641)。这些蛋白质的功能主要涉及光合代谢、糖代谢和胁迫防御。【结论】短日照处理诱导油松容器苗蛋白质差异表达,对油松容器苗的基础代谢和抗逆性产生重要影响。
Abstract:
【Objective】 Determining basic metabolism and stress resistance response to short-day treatment at the protein level for Pinus tabulaeformis Carr. container seedling and providing theoretical basis for applying the short-day treatment on seedlings used in the difficult site afforestation in Northern China.【Method】Short-day treatment was applied to P. tabulaeformis container seedlings by artificially reduced day length to 10 hours for 21 days. Seedling leaves were sampled and leaf proteins were extracted by improved phenol method. A proteomic analysis using two-dimensional electrophoresis(2-DE)in combination with MALDI-TOF/TOF MS analysis was performed to investigate changes in protein expression. The MS/MS data were submitted to Mascot search engine to search the NCBInr and Swiss Prot database for protein identification. Functional information of the identified proteins was found in UniProt.【Result】We obtained five proteins expressed differentially(P < 0.05)induced by short-day treatment. They were up-regulated expression of oxygen-evolving enhancer protein 1(OEE1)(spot 404), glyceraldehyde-3-phosphate dehydrogenase(GAPDH)(spot 539), elongation factor Tu(EF-Tu)(spot 654), ribulose bisphosphate carboxylase/oxygenase activase(RCA)(spot 681), and down-regulated expression of phosphoglycerate kinase 1(PGK1)(spot 641). They are mainly involved in plant photosynthetic metabolism, sugar metabolism and stress defense.【Conclusion】The different expression of P. tabulaeformis seedling leaf proteins can be induced by short-day treatment. These proteins are mainly involved in plant primary metabolism and stress response, suggesting that short-day treatment could play important roles in the development of basic metabolism and stress resistance of seedling.

参考文献/References:

[1] 刘勇, 李国雷, 祝燕. 美国林木种苗培育技术现状及启示[J]. 世界林业研究, 2013, 26(4):75-80. DOI:10.13348/ j.cnki.sjlyyj.2013.04.004. LIU Y, LI G L, ZHU Y. Nursery techniques in the USA and their inspirations[J]. World Forestry Research, 2013, 26(4): 75-80.
[2] 蒋乐, 李国雷, 刘勇, 等. 短日照处理在夏季造林中的应用及研究进展[J]. 世界林业研究, 2013, 26(5): 36-40. DOI:10.13348/j.cnki.sjlyyj.2013.05.013. JIANG L, LI G L, LIU Y, et al. Research progress of application of short-day treatment to summer planting[J]. World Forestry Research, 2013, 26(5): 36-40.
[3] LUORANEN J, RIKALA R. Post-planting effects of early-season short-day treatment and summer planting on Norway spruce seedlings[J]. Silva Fennica, 2015, 49(1): 1-9. DOI: 10.14214/sf.1300.
[4] TAN W X, BLANTON S, BIELECH J P. Summer planting performance of white spruce 1+0 container seedlings affected by nursery short-day treatment[J]. New Forests, 2008, 35(2): 187-205. DOI:10.1007/ s11056-007-9071-6.
[5] OLSEN J E. Light and temperature sensing and signaling in induction of bud dormancy in woody plants[J]. Plant Molecular Biology, 2010, 73(1): 37-47. DOI:10.1007/ s11103-010-9620-9.
[6] FLØISTAD I S, GRANHUS A. Bud break and spring frost hardiness in Picea abies seedlings in response to photoperiod and temperature treatments[J]. Canadian Journal of Forestry Research, 2010, 40(5): 968-976. DOI: 10.1139/X10-050.
[7] GONZÁLEZ L M G, El KAYAL W, MORRIS J S, et al. Diverse chitinases are invoked during the activity-dormancy transition in spruce[J]. Tree Genetics & Genomes, 2015, 11(3): 1-21. DOI: 10.1007/ s11295-015-0871-0.
[8] FENNELL A Y, SCHLAUCH A, GOUTHU S, et al. Short day transcriptomic programming during induction of dormancy in grapevine[J]. Frontiers in Plant Science, 2015, 6: 1-17. DOI: 10.3389/10.3389/ fpls. 2015.00834.
[9] LUORANEN J, HELENIUS P, HUTTUNEN L, et al. Short-day treatment enhances root egress of summer-planted Picea abies seedlings under dry conditions[J]. Scandinavian Journal of Forest Research, 2007, 22(5): 384-389. DOI:10.1080/02827580701551382.
[10] KOSTOPOULOU P, RADOGLOU K, et al. Performance and quality of Cupressus sempervirens L. mini-plug seedlings under reduced photoperiod[J]. European Journal of Forest Research, 2011, 130(4): 579-588. DOI: 10.1007/s10342-010-0447-3.
[11] RODZIEWICZ P, SWARCEWICZ B, CHMIELEWSKA K, et al. Influence of abiotic stresses on plant proteome and metabolome changes[J]. Acta Physiologiae Plantarum, 2014, 36(1): 1-19. DOI: 10.1007/s11738-013-1402-y.
[12] ANGURAJ V A K. Gel-based proteomics in plants: time to move on from the tradition[J]. Frontiers in Plant Science, 2015, 6: 369. DOI: 10.3389/fpls.2015.00369.
[13] CARPENTIER S C, WITTERS E, LAUKENS K, et al. Preparation of protein extracts from recalcitrant plant tissues: an evaluation of different methods for two-dimensional gel electrophoresis analysis[J]. Proteomics, 2005, 5(10): 2497-2507. DOI:10.1002/pmic.200401222.
[14] BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1): 248-254. DOI:10. 1016/0003-2697(76)90527-3.
[15] CANDIANO G, BRUSCHI M, MUSANTE L, et al. Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis[J]. Electrophoresis, 2004, 25(9): 1327-1333. DOI: 10.1002/elps. 200305844.
[16] 毕影东. 樟子松顶芽休眠与萌发转换的蛋白质组学研究[D]. 哈尔滨:东北林业大学, 2010. BI Y D. Proteomics analysis of apical bud during the dormancy-to-growth transitions in Pinus sylvestris L. var. mongolica Litv.[D]. Harbin: Northeast Forestry University, 2010.
[17] TRIPKOVIC T, CHARVY C, ALVES S, et al. Identification of protein binders in artworks by MALDI-TOF/TOF tandem mass spectrometry[J]. Talanta, 2013, 113(15): 49-61. DOI:10.1016/j. Talanta. 2013.03.071.
[18] 陈霞, 陈辉, 高锦明. 秦岭油松针叶挥发性物质的成分分析[J]. 西北植物学报, 2005, 25(6): 1230-1233. CHEN X, CHEN H, GAO J M. Constituents of the volatile materials from the needles of Pinus tabulaeformis in the Qinling ranges[J]. Acta Botanica Boreali-Occidentalia Sinica, 2005, 25(6): 1230-1233.
[19] WU X L, GONG F P, WANG W. Protein extraction from plant tissues for 2-DE and its application in proteomic analysis[J]. Proteomics, 2014, 14(6): 645-658. DOI: 10.1002/pmic.201300239.
[20] YANG Y Q, LI X, YANG S H, et al. Comparative physiological and proteomic analysis reveals the leaf response to cadmium-induced stress in poplar(Populus yunnanensis)[J]. PLoS One, 2015, 10(9): 1-20. DOI:10.1371/journal.pone.0137396.
[21] 陈晶瑜, 郭宝峰, 何付丽, 等. 适合双向电泳的植物全蛋白提取方法比较[J]. 中国农学通报, 2010, 26(23): 97-100. CHEN J Y, GUO B F, HE F L, et al. The comparison of protein extraction methods of plant for two-dimensional electrophoresis[J]. Chinese Agricultural Science Bulletin, 2010, 26(23): 97-100.
[22] 徐超, 吴小芹, 林司曦, 等. 马尾松根部蛋白双向电泳分离体系的构建[J]. 南京林业大学学报(自然科学版), 2011, 35(1): 15-18. DOI:10.3969/j.issn.1000-2006.2011.01.00. XU C, WU X Q, LIN S X, et al. Establishment of two-dimensional gel electrophoresis system for analyzing the root protein of Pinus massoniana[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2011, 35(1): 15-18.
[23] ZHANG M H, LI G W, HUANG W, et al. Proteomic study of Carissa spinarum in response to combined heat and drought stress[J]. Proteomics, 2010, 10(17): 3117-3129. DOI: 10.1002/ pmic. 200900637.
[24] WANG L, LIANG W, XING J, et al. Dynamics of chloroplast proteome in salt-stressed mangrove Kandelia candel (L.)Druce.[J]. Journal of Proteome Research, 2013, 12(11): 5124-5136. DOI: 10.1021/ pr4006469.
[25] 曾光辉. 杨梅光抑制的研究[D]. 杭州: 浙江大学, 2004. ZENG G H. The study on the photoinhibition of photosynthesis in Myrica rubra Sieb.et Zucc.[D]. Hangzhou: Zhejiang University, 2004.
[26] MARGARIA P, ABBÀ S, PALMANO S. Novel aspects of grapevine response to phytoplasma infection investigated by a proteomic and phospho-proteomic approach with data integration into functional networks[J]. BMC Genomics, 2013, 14(1): 1-15. DOI:10.1186/1471-2164-14-38.
[27] WESTON D J, BAUERLE W L, SWIRE-Clark G A, et al. Characterization of rubisco activase from thermally contrasting genotypes of Acer rubrum (Aceraceae)[J]. American Journal of Botany, 2007, 94(6): 926-934. DOI: 10.3732/ajb.94.6.926.
[28] 张霞, 王艳, 张富春. 逆境胁迫下甘油醛-3-磷酸脱氢酶功能多元化的研究进展[J]. 植物生理学报, 2013, 49(1): 24-28. DOI: 10.13592/j.cnki.ppj.2013.01.002. ZHANG X, WANG Y, ZHANG F C. Advances in the research of the diversified functions of glyceraldehyde-3-phosphate dehydrogenase under unfavorable conditions[J]. Plant Physiology Journal, 2013, 49(1): 24-28.
[29] 龙良启, 孙中武, 宋慧, 等. 生物化学[M]. 北京: 科学出版社, 2005:148-153.
[30] 潘瑞炽.植物生理学[M]. 5版. 北京: 高等教育出版社,2004: 105-108, 247-249. PAN R Z. Plant physiology[M]. 5 Edition. Beijing: Higher Education Press, 2004: 105-108, 247-249.
[31] LEE Y K, ALEXANDER D, WULFF J, et al. Changes in metabolite profiles in Norway spruce shoot tips during short-day induced winter bud development and long-day induced bud flush[J]. Metabolomics, 2014, 10(5): 842-858. DOI: 10.1007/s11306-014-0646-x.
[32] 陈建中, 章镇, 戴剑. 植物蛋白质合成延伸因子[J]. 植物生理学通讯, 2002, 38(4): 406-411. DOI:10.13592/j.cnki.ppj.2002.04.035. CHEN J Z, ZHANG Z, DAI J. Elongation factors in plant protein synthesis[J]. Plant Physiology Communications, 2002, 38(4): 406-411.
[33] 何彩云. 四种针叶树与欧美107杨响应干旱与高温胁迫的蛋白质组研究[D]. 北京:中国林业科学研究院, 2007. HE C Y. Proteomic analysis of four coniferous tree species and Populus×euramericana cv.‘74/76'under drought and high-temperature stress[D]. Beijing: Chinese Academy of Forestry, 2007.
[34] DURAND T C, SERGEANT K, CARPIN S, et al. Screening for changes in leaf and cambial proteome of Populus tremula× P. alba under different heat constraints[J]. Journal of Plant Physiology, 2012, 169(17): 1698-1718. DOI: 10.1016/j. jplph. 2012. 06.016.
[35] 王盾. Rubisco活化酶大小同工型与水稻光合作用的关系研究[D]. 杭州:浙江大学, 2009. WANG D. The relationship between rubisco activase isoforms and photosynthesis in rice[D]. Hangzhou: Zhejiang University, 2009.
[36] 梁颖, 李玉花. 植物中磷酸甘油醛-3-磷酸脱氢酶(GAPDH)在氧化胁迫下的生理功能[J]. 植物生理学通讯, 2009, 45(10): 1027-1032. DOI: 10.13592/j.cnki. ppj.2009.10.001. LIANG Y, LI Y H. Physiological functions of glyceraldehyde-3-phosphate dehydrogena-se in plants under oxidative stress condition[J]. Plant Physiology Communications, 2009, 45(10): 1027-1032.

相似文献/References:

[1]吕瑞恒,李国雷,刘 勇*,等.不同林龄油松针叶凋落物初期分解特性比较[J].南京林业大学学报(自然科学版),2013,37(02):039.[doi:10.3969/j.issn.1000-2006.2013.02.007]
 LYU Ruiheng,LI Guolei,LIU Yong*,et al.Study on initial decomposition characteristics of Pinus tabulaeformis needle litter at different stand age[J].Journal of Nanjing Forestry University(Natural Science Edition),2013,37(02):039.[doi:10.3969/j.issn.1000-2006.2013.02.007]
[2]徐扬,刘勇*,李国雷,等.间伐强度对油松中龄人工林林下植被多样性的影响[J].南京林业大学学报(自然科学版),2008,32(03):135.[doi:10.3969/j.jssn.1000-2006.2008.03.032]
 XU Yang,LIU Yong*,LI Guo-lei,et al.Effects of the thinning intensity on the diversity of undergrowth vegetation in Pinus tabulaeformis plantations[J].Journal of Nanjing Forestry University(Natural Science Edition),2008,32(02):135.[doi:10.3969/j.jssn.1000-2006.2008.03.032]
[3]贾全全,罗春旺,刘琪璟*,等.不同林分密度油松人工林生物量分配模式[J].南京林业大学学报(自然科学版),2015,39(06):087.[doi:10.3969/j.issn.1000-2006.2015.06.016]
 JIA Quanquan,LUO Chunwang,LIU Qijing*,et al.Biomass allocation in relation to stand density in Pinus tabuliformis plantation[J].Journal of Nanjing Forestry University(Natural Science Edition),2015,39(02):087.[doi:10.3969/j.issn.1000-2006.2015.06.016]
[4]滕 飞,刘 勇*,胡嘉伟,等.蘑菇渣堆肥对油松移植容器苗生长和养分的影响[J].南京林业大学学报(自然科学版),2016,40(05):184.[doi:10.3969/j.issn.1000-2006.2016.05.029]
 TENG Fei,LIU Yong*,HU Jiawei,et al.Effects of different mushroom slag compost on growth and nutrient accumulation of Pinus tabulaeformis containerized transplantings[J].Journal of Nanjing Forestry University(Natural Science Edition),2016,40(02):184.[doi:10.3969/j.issn.1000-2006.2016.05.029]

备注/Memo

备注/Memo:
基金项目:国家林业局“948”项目(2012-4-66); 国家林业公益性行业科研专项项目(201004021) 第一作者:蒋乐(le2010girl@163.com)。*通信作者:刘勇(lyong@bjfu.edu.cn),教授。
更新日期/Last Update: 2018-04-08