[1]张俊叶,俞 菲,杨靖宇,等.南京城市林业土壤多环芳烃累积特征及其与黑炭的相关性[J].南京林业大学学报(自然科学版),2018,42(02):075.[doi:10.3969/j.issn.1000-2006.201704010]
 ZHANG Junye,YU Fei,YANG Jingyu,et al.Accumulation of polycyclic aromatic hydrocarbons and their correlation withblack carbon in urban forest soil of Nanjing City, China[J].Journal of Nanjing Forestry University(Natural Science Edition),2018,42(02):075.[doi:10.3969/j.issn.1000-2006.201704010]
点击复制

南京城市林业土壤多环芳烃累积特征及其与黑炭的相关性
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
42
期数:
2018年02期
页码:
075
栏目:
研究论文
出版日期:
2018-03-20

文章信息/Info

Title:
Accumulation of polycyclic aromatic hydrocarbons and their correlation with black carbon in urban forest soil of Nanjing City, China
文章编号:
1000-2006(2018)02-0075-06
作者:
张俊叶12俞 菲3杨靖宇1俞元春1䥺Symbolj@@
1.南方现代林业协同创新中心,南京林业大学生物与环境学院,江苏 南京 210037; 2.河南职业技术学院 环境艺术工程系,河南 郑州 450046; 3.江苏农林职业技术学院风景园林学院,江苏 句容 212400
Author(s):
ZHANG Junye12 YU Fei3 YANG Jingyu1 YU Yuanchun1*
1.Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; 2. Department of Environment and Art Engineering, Henan Polytechnic College, Zhengzhou 450046, China; 3. College of Landscape Architecture, Jiangsu Polytechnic College of Agriculture and Forestry, Jurong 212400, China
关键词:
关键词:城市林业土壤 多环芳烃 黑炭 环境危害 南京市
Keywords:
Keywords:urban forest soil polycyclic aromatic hydrocarbons(PAHs) black carbon(BC) environmental hazoord Nanjing City
分类号:
S714; X131.3
DOI:
10.3969/j.issn.1000-2006.201704010
文献标志码:
A
摘要:
【目的】揭示南京城市林业土壤中多环芳烃(PAHs)的累积特征及其与土壤黑炭(BC)的相关性。【方法】采集了南京市城市广场(US)、道路绿化带(RGB)、公园(UP)、居住区(RA)、城市片林(UF)、城郊天然林(URF)等6个典型城市林业功能区18个研究样地3个土壤层次(0~10、≥10~20、≥20~30 cm)共54个土壤样品,分析了土壤中PAHs、BC的含量及土壤pH。【结果】PAHs在各功能区的含量大小依次为:US(975.06 ng/kg)>RGB(614.57 ng/kg)>UP(523.14 ng/kg)>RA(512.01 ng/kg)>UF(273.41 ng/kg)>URF(270.71 ng/kg)。US土壤多环芳烃含量显著高于其他功能区,RGB 多环芳烃含量显著高于UP、RA、UF和URF(P<0.05)。各功能区土壤PAHs组成相似,以3环、4环和5环PAHs为主,尤其是以3环PAHs占主导。各功能区土壤中PAHs在3个土层中的含量存在显著差异(P<0.05)。不同功能区的纵向分布规律不同,RGB、US、RA、URF各土层含量从大到小均表现为≥10~20 cm、≥0~10 cm、≥20~30 cm,UP各土层含量从大到小均表现为0~10 cm、≥10~20 cm、≥20~30 cm,UF各土层含量从大到小均表现为0~10 cm、≥20~30 cm、≥10~20 cm。各功能区土壤PAHs的生态风险效应(RBap)大小依次为US>RGB>UP>RA>UF>URF,且RBap均在1.0~1.6之间,对研究区内的生物潜在危害性较低。土壤中BC的含量与PAHs存在显著相关(R2=0.74, P<0.05)。【结论】南京市城市林业功能区土壤PAHs含量存在差异,城市广场(US)土壤多环芳烃含量显著高于其他功能区。土壤PAHs组成以3环、4环和5环PAHs为主,尤其是以3环PAHs占主导。土壤PAHs总体表现为随土层加深而下降。各功能区土壤中PAHs的生态风险效应RBap值较小,对研究区内的生物潜在危害性较低,土壤PAHs与BC显著相关。
Abstract:
【Objective】 This study aimed to reveal the accumulation of polycyclic aromatic hydrocarbons(PAHs)in urban forest soil and their correlation with soil black carbon(BC)in Nanjing, China.【Method】 Fifty-four urban forest soil samples at 18 sites in Nanjing were collected, including three soil layers of 0-10, ≥10-20, and ≥20-30 cm, and six typical urban forestry function zones of urban square(US), road green belts(RGB), urban park(UP), residential areas(RA), urban forest(UF), and urban rural forest(URF). The PAH and BC contents, as well as the soil pH values, were analyzed.【Results】PAH contents in different function zones were in the following order: US(975.06 ng/kg)>RGB(614.57 ng/kg)>UP(523.14 ng/kg)>RA(512.01 ng/kg)>UF(273.41 ng/kg)>URF(270.71 ng/kg). The PAH contents in the US were significantly higher than those in other function zones, and those in RGB were significantly higher than those in the UP, RA, UF and URF(P<0.05). The composition of soil PAHs in the study areas was similar, mainly with three-ringed, four-ringed, or five-ringed PAHs, with three-ringed PAHs being dominant. The PAH contents in the three soil layers were significantly different among different function zones(P<0.05). The vertical distribution among different function zones was different, and for the different soil layers in the RGB, US, RA and URF, from highest to lowest, the distribution was ≥10-20, 0-10, and ≥20-30 cm; for different soil layers in the UP, from highest to lowest, the distribution was 0-10, ≥10-20, and ≥20-30 cm; and for different soil layers in the UF, from highest to lowest, the distribution was 0-10, ≥20-30, and ≥10-20 cm. The ecological risk effect(RBap)of soil PAHs in the different function zones was between 1.0-1.6, and from highest to lowest, was US>RGB>UP>RA>UF>URF, which indicated a low potential harmfulness to organisms in the study area. There were significant correlations between BC and PAH contents(R2=0.74, P<0.05). 【Conclusion】 The PAH contents in soils among different urban forest function zones in Nanjing were different, the PAH content in the urban square(US)was significantly higher than that in other function zones. Soil PAHs were mainly composed of three-ringed, four-ringed, or five-ringed PAHs, with three-ringed PAHs being most dominant. The total soil PAH content decreased with increasing of soil depth as a whole. The ecological risk effect(RBap)of soil PAHs was small, with a low potential harmfulness to organisms in the study area. Soil PAH content was significantly correlated with BC content.

参考文献/References:

[1] KOLTOWSKI M, HILBER I, BUCHELI T D, et al. Activated biochars reduce the exposure of polycyclic aromatic hydrocarbons in industrially contaminated soils[J]. Chemical Engineering Journal, 2017, 310: 33-40. DOI: 10.1016/j.cej.2016.10.065.
[2] RAVINDRA K, SOKHI R, VANGRIEKEN R. Atmospheric polycyclic aromatic hydrocarbons: source, distribution, emission factors and regulation[J]. Atmospheric Environment, 2008, 42(13): 2895-2921. DOI: 10.1016/j.atmosenv. 2007.12.010.
[3] 邓绍坡, 吴运金, 龙涛, 等. 我国表层土壤多环芳烃(PAHs)污染状况及来源浅析[J]. 生态与农村环境学报, 2015, 31(6): 866-875. DOI: 10.11934/j.issn.1673-4831.2015.06.011. DENG S P, WU Y J, LONG T, et al. PAHs contamination in the surface soil of China and its sources[J]. Journal of Ecology and Rural Environment, 2015, 31(6): 866-875.
[4] KANALY R A, HARAYAMA S. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria[J]. Journal of Bacteriology, 2000, 182(8): 2059-2067. DOI: 10.1128/JB.182.8.2059-2067.2000.
[5] LARSEN R K, BAKER J E. Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: a comparison of three methods[J]. Environmental Science & Technology, 2003, 37(9): 1873-1881. DOI: 10.1021/es0206184.
[6] PHILLIPS D H. Polycyclic aromatic hydrocarbons in the diet[J]. Mutation Research-genetic Toxicology and Environmental Mutagenesis, 1999, 443(1/2): 139-147. DOI: 10.1016/S1383-5742(99)00016-2.
[7] SAMA NTA S K, SINGH O V, JAIN R K. Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation[J]. Trends in Biotechnology, 2002, 20(6): 243-248. DOI: 10.1016/S167-7799(02)01943-1.
[8] ZAKARIA M P, TAKADA H, TSUTSUMI S. Distribution of polycyclic aromatic hydrocarbons(PAHs)in rivers and estuaries in Malaysia: a widespread input of petrogenic PAHs[J]. Environmental Science & Technology, 2002, 36(9): 1907-1918. DOI: 10.1021/es011278+.
[9] HU L M, SHI X F, QIAO S Q, et al. Sources and mass inventory of sedimentary polycyclic aromatic hydrocarbons in the Gulf of Thailand: implications for pathways and energy structure in SE Asia[J]. Science of the Total Environment, 2017, 575: 982-995. DOI: 10.1016/j.scitotenv.2016.09.158.
[10] YETKIN D, EFTADE O G, ELIF G, et al. Spatial and seasonal variations, sources, air-soil exchange, and carcinogenic risk assessment for PAHs and PCBs in air and soil of Kutahya, Turkey, the Province of thermal power plants[J]. Science of the Total Environment, 2017, 580: 920-935. DOI: 10.1016/j.scitotenv.2016.12.040.
[11] GHOSH U. The role of black carbon in influencing availability of PAHs in sediments[J]. Human & Ecological Risk Assessment An International Journal, 2007, 13(2): 276-285. DOI: 10.1080/10807030701226731.
[12] YANG W, LAMPERT D, ZHAO N, et al. Link between black carbon and resistant desorption of PAHs on soil and sediment[J]. Journal of Soils and Sediments, 2012, 12(5):713-723. DOI: 10.1007/s11368-012-0494-0.
[13] LIU S D, XIA X H, ZHAI Y W, et al. Black carbon(BC)in urban and surrounding rural soils of Beijing, China: spatial distribution and relationship with polycyclic aromatic hydrocarbons(PAHs)[J]. Chemosphere, 2011, 82(2): 223-228. DOI: 10.1016/j.chemosphere.2010.10.017.
[14] CORNELISSEN G, GUSTAFSSON O. Effects of added PAHs and precipitated humic acid coatings on phenanthrene sorption to environmental black carbon[J]. Environmental Pollution, 2006, 141(3): 526-531. DOI: 10.1016/j.envpol.2005.08.053.
[15] NAM J J, GUSTAFSSON O, KURT K P, et al. Relationships between organic matter, black carbon and persistent organic pollutants in European background soils: implications for sources and environmental fate[J]. Environmental Pollution, 2008, 156(3): 809-817. DOI: 10.1016/j.envpol.2008.05.027.
[16] ZHANG J H, HE M C. Effect of surfactants on sorption and desorption of phenanthrene onto black carbon[J]. Water Environment Research, 2011, 83(1): 15-22. DOI: 10.2175/106143010X12681059116536.
[17] 杨靖宇,俞元春,王小龙. 南京市不同功能区林业土壤多环芳烃含量与来源分析[J]. 生态环境学报,2016, 25(2): 314-319. DOI: 10.16258/j.cnki.1674-5906.2016.02.019. YANG J Y, YU Y C, WANG X L. Characterization and sources of polycyclic aromatic hydrocarbons in urban forestry soilsfrom different functional areas of Nanjing City[J]. Ecology and Environmental Sciences, 2016, 25(2): 314-319.
[18] 王曦,杨靖宇,俞元春,等.不同功能区城市林业土壤黑炭含量及来源——以南京市为例[J].生态学报, 2016, 36(3): 837-843. DOI: 10.5846/stxb201404200775. WANG X, YANG J Y, YU Y C, et al. Concentration and sources of black carbon in urban forest soils in different functionalareas of Nanjing, China[J]. Acta Ecologica Sinica, 2016, 36(3): 837-843.
[19 ] 陆继龙, 赵玉岩, 郝立波, 等. 吉林省中部农业土壤中PAHs的分布及风险评价[J]. 吉林大学学报(地球科学版), 2010, 40(3): 683-688. DOI: 10.13278/j.cnki.jjuese.2010.03.033. LU J L, ZHAO Y Y, HAO L B, et al. Distribution and risk evaluation of polycyclic aromatic hydrocarbons of agriculturalsoils in the middle Jilin province[J]. Journal of Gilin University(Earth Science Edition), 2010, 40(3):683-688.
[20] AGARWAL T, BUCHELI T D. Is black carbon a better predictor of polycyclic aromatic hydrocarbons distribution in soils than total organic carbon?[J]. Environmental Pollution, 2011, 159(1):64-70. DOI: 10.1016/j.envpol. 2010.09.016.
[21] JIANG Y F, WANG X T, WANG F, et al. Levels, composition profiles and sources of polycyclic aromatic hydrocarbons in urban soil of Shanghai, China[J]. Chemosphere, 2009, 75(8): 1112-1118. DOI: 10.1016/ j.chemosphere.2009.01.027.
[22] MARUSENKO Y, HERCKES P, HALL S J. Distribution of polycyclic aromatic hydrocarbons in soils of an arid urban ecosystem[J]. Water Air and Soil Pollution, 2011, 219(1-4): 473-487. DOI: 10.1016/j.chemosphere.2009.01.027.
[23] 史兵方,唐婧, 兰翠玲,等.土壤中多环芳烃的垂直分布特征及来源研究——以四川省南充市区为例[J].安全与环境学报,2010, 10(4): 73-77. DOI: 10.3969/j.issn.1009-6094.2010.04.018. SHI B F, TANG J, LAN C L, et al. Vertical distribution characteristics and sources of polycyclic aromatic hydrocarbons in soils in industrial zones in Nanchong City[J]. Journal of Safety and Environment, 2010, 10(4): 73-77.
[24] BU Q W, ZHANG Z H, LU S, et al. Vertical distribution and environmental significance of PAHs in soil profiles in Beijing, China[J]. Environment Agrochemistry and Health, 2009, 31(1): 119-131. DOI: 10.1007/s10653-008-9171-z.
[25] OEN M P, CORNELISSEN G, BREEDVELD G D. Relation between PAH and black carbon contents in size fractions of Norwegian harbor sediments[J]. Environmental Pollution, 2006, 141(2): 370-380. DOI: 10.1016/j.envpol.2005.08.033.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金项目(31670615,31700631,31270664); 欧盟Erasmus +项目(586247-EPP-1-2017-1-IT-EPPKA2-CBHE-JP); 江苏高校优势学科建设工程资助项目(PAPD) 第一作者:张俊叶(2432732461@qq.com)。*通信作者:俞元春(ycyu@njfu.edu.cn),教授。
更新日期/Last Update: 2018-04-08