[1]陈 波,蒋 燕,鲁绍伟,等.北京西山不同树种夏秋季PM2.5吸附量与润湿性关系[J].南京林业大学学报(自然科学版),2018,42(02):113-119.[doi:10.3969/j.issn.1000-2006.201607040]
 CHEN Bo,JIANG Yan,LU Shaowei Symbolj@@,et al.Relationship between PM2.5 adsorption and wettability of different trees during summer, autumn in West Mountain of Beijing[J].Journal of Nanjing Forestry University(Natural Science Edition),2018,42(02):113-119.[doi:10.3969/j.issn.1000-2006.201607040]





Relationship between PM2.5 adsorption and wettability of different trees during summer, autumn in West Mountain of Beijing
陈 波1蒋 燕2鲁绍伟13李少宁13陈鹏飞4刘海龙4赵东波4
1.北京市林业果树科学研究院,北京燕山森林生态系统定位观测站,北京 100093; 2.西南林业大学生态与水土保持学院,云南 昆明 650224; 3.北京林果业生态环境功能提升协同创新中心,北京 100093; 4.北京西山实验林场,北京 100093
CHEN Bo1 JIANG Yan2 LU Shaowei13 䥺Symbolj@@ LI Shaoning13 䥺Symbol`@@ CHEN Pengfei4LIU Hailong4 ZHAO Dongbo4
1.Beijing Academy of Forestry and Pomology Sciences, Beijing Yanshan Forest Ecosystem and Observation Station, Beijing 100093, China; 2. College of Ecology and Soil & Water Conservation, Southwest Forestry University, Kunming 650224, China; 3.Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing 100093, China; 4.Xishan Experimental Forest Farm of Beijing City, Beijing 100093, China
北京西山 夏秋季 阔叶树种 PM2.5吸附量 润湿性 城市绿地系统
Keywords:West Mountain in Beijing summer and autumn broadleaf trees accumulation capacity on PM2.5 wettability urban greenland system
S719; X513
【目的】北京地区环境问题中的颗粒物PM2.5污染备受关注。研究北京地区阔叶树种的PM2.5吸附量季节差异及影响因素,探讨各树种叶片吸附PM2.5机理,为城市绿化树种的科学选择提供参考。【方法】以北京西山4种阔叶树种(柳树Salix babylonica、五角枫Acer mono、银杏Ginkgo biloba、杨树Populus spp.)为对象,应用气溶胶再发生器测定植物叶片夏秋PM2.5吸附量,用光学接触角测量仪测定叶片与水及二碘甲烷接触角,运用Owens-Wendt-Kaelble法,并结合Young方程计算叶片表面自由能及其极性和色散分量。【结果】树种单位叶面积PM2.5吸附量平均值依次为柳树[(0.97±0.46)μg/cm2]>五角枫[(0.78±0.39)μg/cm2]>银杏[(0.69±0.31)μg/cm2)]>杨树[(0.62±0.21)μg/cm2],杨树与柳树、银杏吸附PM2.5能力差异均显著(P<0.05),秋季树种PM2.5吸附量高于夏季; 树种PM2.5吸附量与其润湿性(接触角)呈正(负)相关(P<0.01),与叶片表面自由能(P<0.05)及其色散分量(P<0.01)也呈正相关,与极性分量相关性不显著。【结论】4种阔叶树的PM2.5滞尘能力以柳树最强,杨树最弱,五角枫、银杏次之,阔叶树种夏季滞尘能力高于秋季; 可以根据各树种吸附PM2.5特征合理调整城市绿化规划,充分发挥城市绿地系统的生态功能。
【Purposes】Beijing, as an international metropolis, has a serious environmental problem. Seasonal difference of PM2.5 adsorption and its affecting factors between broadleaf trees was observed. It aims to investigate the adsorption mechanism of leaf on PM2.5 among various tree species and support the selection of urban landscaping tree species.【Methods】 Four tree species(Salix babylonica, Acer mono, Ginkgo biloba and Populus spp.)were selected and their accumulation capacity of PM2.5 were observed in Western Mountainous areas of Beijing. An aerosol generator was used for quantitative determination of PM2.5 adsorption. We measured contact angel between leaves and water, diiodomethane. Surface free energy and its polar and dispersive component of leaf were calculated based on Owens-Wendt-Kaelble method and Young equation.【Results】The accumulation capacities of leaves on PM2.5 per leaf area were S. babylonica((0.97±0.46)μg/cm2)>A. mono((0.78±0.39)μg/cm2)>G. biloba((0.69±0.31)μg/cm2)>Populus spp.((0.62±0.21)μg/cm2).The differences of adsorption capacity on PM2.5 between S. babylonica and G. biloba, Populus spp. were obvious(α=0.05, P<0.05).The adsorption quantity of tree on PM2.5 in autumn was higher than that in summer. There was a significant relationship between leaf surface wettability(leaf contact angel)and leaf adsorption quantity on PM2.5(P<0.01).The adsorption of tree on PM2.5 was positively correlated with leaf surface free energy(P<0.05). Its dispersive component had a significant correlation with leaf adsorption quantity on PM2.5(P<0.01), where as non significant relationship was found with polar free energy. 【Conclusion】 PM2.5 accumulation capacity among the broadleaf trees: the strongest was S. babylonica and the weakest was Populus spp. Accumulation capacity of them in summer was higher than it in autumn. We can make the plans on city landscape rationally, according to PM2.5 adsorption characteristics of various tree species, so as to develop the ecological function of urban greenland system.


[1] MYHRE G. Consistency between satellite-derived and modeled estimates of the direct aerosol effect[J]. Science, 2009,325(5937):187-190. DOI:10.1126/Science.1174461.
[2] 李雪,刘子锐,任希岩.2007和2008年夏季北京奥运馆大气PM10和PM2.5质量浓度变化特征[J].大气科学学报,2012,35(2):197-204. DOI:10.1289/ehp.0900916.LI X,LIU Z R,REN X Y, et al. Characteristics of PM10 and PM2.5 during Summer time of 2007 and 2008 at Beijing National Stadium[J]. Transactions of Atmospheric Sciences, 2012,35(2):197-204.
[3] CLARK N A, DEMERS P A, KARR C J, et al. Effect of early life exposure to air pollution on development of childhood as thma[J]. Environmental Health Perspectives,2010,118(2): 284-290. DOI:10.1289/ehp.0900916.
[4] YOSHIZAKI K, BRITO J M, TOLEDO A C, et al. Sub chronic effects of nasally instilled diesel exhaust particulates on the nasal and airway epithelia in mice[J]. Inhal Toxicol, 2010,22(7):610-617. DOI:10.3109/08958371003621633.
[5] DAI W, CAO J, CAO C, et al. Chemical composition and sources identification of PM10 and PM2.5 in the suburb of Shenzhen, China[J]. Atmospheric Research, 2013,122:391-400.DOI:10.1016/j.atmosres.2012.12.004.
[6] NOWAK D J, CRANE D E, STEVENS J C. Air pollution removal by urban trees and shrubs in the United States[J]. Urban Forestry & Urban Greening, 2006,4(3):115-123. DOI:10.1016/j.ufug.2006.01.007.
[7] 王兵,鲁绍伟.中国经济林生态系统服务价值评估[J].应用生态学报,2009, 20(2):417-425.WANG B, LU S W. Evaluation of economic forest ecosystem services in China[J].Chinese Journal of Applied Ecology, 2009, 20(2):417-425.
[8] PRAJAPATI S K, TRIPATHI B D. Seasonal variation of leaf dust accumulation and pigment content in plant species exposed to urban particulates pollution[J]. Journal of Environmental Quality, 2008,37(3):865-870. DOI:10.2134/jeq2006.0511.
[9] 刘璐,管东生,陈永勤.广州市常见行道树种叶片表面形态与滞尘能力[J].生态学报,2013,33(8):2604-2614. DOI:10.5846/stxb201201100054.LIU L,GUAN D S,CHEN Y Q. Morphological structure of leaves and dust-retaining capability of common street trees in Guangzhou municipality[J].Acta Ecologica Sinica, 2013,33(8):2604-2614.
[10] 王会霞,王彦辉,杨佳,等.不同绿化树种滞留PM2.5质量等颗粒污染物能力的多尺度比较[J].林业科学,2015,51(7):9-20. DOI:10.11707/j.1001-7488.20150702.WANG H X,WANG Y H,YANG J, et al. Multi-scale comparisons of particulate matter and its size fractions deposited on leaf surfaces of major greening tree species[J]. Scientia Silvae Sinicae,2015,51(7):9-20.
[11] 王会霞,石辉,李秧秧.城市绿化植物叶表面特征对滞尘能力的影响[J].应用生态学报,2010,21(12):3077-3012.WANG H X, SHI H, LI Y Y. Relationships between leaf surface characteristics and dust-capturing capability of urban greening plant species[J]. Chinese Journal of Applied Ecology, 2010,21(12):3077-3012.
[12] 陈波,刘海龙,赵东波,等.北京西山绿化树种秋季滞纳PM2.5能力及其与叶表面AFM特征的关系[J].应用生态学报,2016,27(3):777-784. DOI:10.13287/j.1001-9332.201603.026.CHEN B,LIU H L,ZHAO D B, et al.Relationship between retention PM2.5 and leaf surface AFM character of six greening trees during autumn in Beijing West Mountain[J].Chinese Journal of Applied Ecology, 2016,27(3):777-784.
[13] 张维康,王兵,牛香.北京不同污染地区园林植物对空气颗粒物的滞纳能力[J].环境科学,2015,36(7):2381-2388. DOI:10.13227/j.hjkx.2015.07.008.ZHANG W K, WANG B, NIU X. Adsorption capacity of the air particulate matter in urban landscape plants indifferent polluted regions of Beijing[J].Environmental Science,2015,36(7):2381-2388.
[14] 房瑶瑶,王兵,牛香. 叶片表面粗糙度对颗粒物滞纳能力及洗脱特征的影响[J].水土保持学报,2015,29(4):110-115. DOI:10.13870/j.cnki.stbcxb.2015.04.021.FANG YY, WANG B, NIU X. Effect of surface roughness on leaf particulate matter capturing capability and rain wash-off characteristics[J]. Journal of Soil and Water Conservation, 2015,29(4):110-115.
[15] 石辉,王会霞,李秧秧.植物叶表面的润湿性及其生态学意义[J].生态学报,2011,31(15):4287-4298.SHI H, WANG H X, LI Y Y.Wettability on plant leaf surfaces and its ecological significance[J].Acts Ecologica Sinica,2011,31(15):4287-4298.
[16] OWENS D K, WENDT R C. Estimation of the surface free energy of polymers[J]. Journal of Applied Polymer Science,1969,13(8):1741-1747. DOI:10.1002/app.1969.070130815.
[17] YOUNG T. An essay on the cohesion of fluids[J]. Philosophical transactions of the royal society of London, 1805,95(0):65-87. DOI:10.1098/rstl.1805.0005.
[18] 庞博,张银龙,王丹.城市植物滞尘的研究现状与展望[J].山东林业科技,2009(2):126-130. DOI:10.3969/j.issn.1002-2724.2009.02.039.PANG B, ZHANG Y L, WANG D. The present and further research of dust-retention by unban plants[J]. Shangdong Forestry Science and Technology, 2009(2):126-130.
[19] 王志玲,王正,阎昊鹏.麦秆表面自由能及其分量研究[J].高分子材料科学与工程,2007,23(3):207-210. DOI:10.3321/j.issn:1000-7555.2007.03.051.WANG Z L, WANG Z, YAN H P. Study on wheat straw surface free energy and its polar and non polar part[J]. Polymer Materials Science and Engineering, 2007,23(3):207-210.
[20] 韩志武,邱兆美,王淑杰,等.植物表面非光滑形态与润湿性的关系[J].吉林大学学报(工学版),2008,38(1):110-115.HAN Z W, QIU Z M, WANG S J, et al. Relationship between non-smooth appearance and wettability of plant leaf surface[J].Journal of Jilin University(Engineering and Technology Edition),2008,38(1):110-115.
[21] 杨佳,王会霞,谢滨泽.北京9个树种叶片滞尘量及叶面微形态解释[J].环境科学研究,2015,28(3):384-392.YANG J, WANG H X, XIE B Z, et al. Accumulation of particulate matter on leaves of nine urban greening plant species with different micro morphological structures in Beijing[J]. Research of environmental Sciences,2015,28(3):384-392.
[22] 贾彦,吴超,董春芳,等.7种绿化植物滞尘的微观测定[J].中南大学学报(自然科学版),2012,43(11):4547-4553.JIA Y, WU C, DONG C F, et al. Measurement on ability of dust removal of seven green plants at micro-conditions[J]. Journal of Central South University(Science and Technology),2012,43(11):4547-4553.
[23] TAKAMATSU T, SASE H, TAKADA J. Some physiological properties of Cryptomeria japonica leaves from Kanto, Japan: potential factors causing tree decline[J]. Canadian Journal of Forest Research, 2001,31(4):663-672. DOI:10.1139/cjfr-31-4-663.
[24] 王会霞,石辉,李秧秧.西安市常见绿化植物叶片润湿性能及其影响因素[J].生态学杂志,2010,29(4):630-636.WANG H X, SHI H, LI YY. Leaf surface wettability of major plant species for urban greening in Xi’an and related affecting factors[J]. Chinese Journal of Ecology,2010,29(4):630-636.
[25] WENZEL R N. Surface roughness and contact angel[J]. The Journal of Physical and Colloid Chemistry,1994,53(9):1466-1467. DOI:10.1021/j150474a015.
[26] 么旭阳,胡耀升,刘艳红.北京市8种常见绿化树种滞尘效应[J].西北林学院学报,2014,29(3):92-95. DOI:10.3969/j.issn.1001-7461.2014.03.19.ME X Y, HU Y S,LIU Y H. Dust retention effect of 8 common greening tree species in Beijing[J].Journal of Northwest Forestry University,2014,29(3):92-95.
[27] KOCH K, BHUSHAN B, BARTHLOTT W. Multifunctional surface structures of plants: an inspiration for biomimetics[J]. Progress in Materials Science,2009,54(2):137-178. DOI:10.1016/j.pmatsci.2008.07.003.


基金项目:北京市农林科学院青年基金项目(QNJJ201530); 科技创新服务能力建设-协同创新中心-林果业生态环境功能提升协同创新中心项目(2011协同创新中心)(PXM2017_014207_ 000038); 北京森林生态质量状况监测基础数据平台建设项目(KJCX20160301); 北京市农林科学院科技创新团队成果(JWKST201609) 第一作者:陈波(zhyechb2010@163.com),助理研究员。*通信作者:鲁绍伟(hblsw8@163.com),研究员,博士。
更新日期/Last Update: 2018-06-12