[1]陈家新,杨红强,*.全球森林及林产品碳科学研究进展与前瞻[J].南京林业大学学报(自然科学版),2018,42(04):001-8.[doi:10.3969/j.issn.1000-2006.201801035]
 CHEN Jiaxin,YANG Hongqiang*.Advances and frontiers in global forest and harvested wood products carbon science[J].Journal of Nanjing Forestry University(Natural Science Edition),2018,42(04):001-8.[doi:10.3969/j.issn.1000-2006.201801035]
点击复制

全球森林及林产品碳科学研究进展与前瞻
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
42
期数:
2018年04期
页码:
001-8
栏目:
专题报道(Ⅰ)
出版日期:
2018-07-12

文章信息/Info

Title:
Advances and frontiers in global forest and harvested wood products carbon science
文章编号:
1000-2006(2018)04-0001-08
作者:
陈家新1杨红强2 3*
1.Ontario Forest Research Institute, Sault Ste. Marie, Ontario P6A 2E5, Canada; 2. 南京林业大学经济管理学院, 江苏 南京 210037; 3. 国家林业局林产品经济贸易研究中心, 江苏 南京 210037
Author(s):
CHEN Jiaxin1YANG Hongqiang23*
1.Ontario Forest Research Institute, Sault Ste. Marie, Ontario P6A 2E5, Canada; 2.College of Economics and Management, Nanjing Forestry University, Nanjing 210037,China; 3.Research Center for Economics and Trade in Forest Products of the State Forestry Administration(SINO-RCETFOR),Nanjing 210037,China
关键词:
气候变化 地球碳循环 森林碳汇 森林管理 林产品 生命周期 替代减排
Keywords:
Keywords:climate change global carbon cycle forest carbon sequestration forest management harvested wood products life-cycle reduced emissions through wood substitution
分类号:
F326
DOI:
10.3969/j.issn.1000-2006.201801035
文献标志码:
A
摘要:
森林和木质林产品是全球碳循环系统中的一个重要组成部分,能够对大气层温室气体的浓度造成重大影响。研究发现全球森林在最近几十年平均每年从大气中吸收二、三十亿吨碳,而毁林和森林退化又造成每年10多亿吨的碳排放。全球森林碳汇并不平衡,由于森林面积的增加,美国、加拿大、中国、欧盟等国家和地区的森林碳汇在近几十年里有了巨大的增长,而在南美洲、中美洲、非洲、南亚和东南亚,毁林却造成了森林碳汇大量减少。相对于森林碳汇来说,木质林产品碳储量较小,但在全球尺度上木质林产品碳储的持续增加对减排的贡献却非常重要。近10年的研究发现,使用木质林产品替代高能耗非林产品可以对林业整体的减排效益做出重要贡献,而生命周期分析法的引入使得这种替代减排效应的核算更为准确。主流研究强调使用集成评估,将经营森林和源于这些森林的木质林产品看作一个整体,从而把两者的碳储及碳排放系统结合,集成评估能够更全面准确地核算整体林业的净温室气体效应。林业碳科学的研究前沿在以下重要领域仍需着力拓展:充分考虑气候变化对森林生长及森林碳汇的影响; 积极推进并完善各国的森林资源清单; 可持续管理和优化使用森林资源以使林业在减缓气候变化方面的贡献最大化; 构建和完善林产品生命周期数据库; 加强全球林业减排效应的集成评估和系统研究。
Abstract:
Abstract: Forests and harvested wood products(HWP)is an important part of the global carbon cycle, and can significantly affect the greenhouse gas(GHG)concentration in the atmosphere. Thus, in the last few decades, forest carbon science has become a hot research area world wild. Initial research efforts mostly focused on forest carbon stocks and stock changes, which indicated that in the last a few decades, the global forests have been a large and consistent carbon sink, absorbing 20-30 million tonnes of carbon from the atmosphere each year while also releasing more than 10 million tonnes of carbon through deforestation and forest degradation. The global forest carbon balance appeared differently: in countries such as the United States, Canada, China, and countries from the European Union, afforestation and reforestation have resulted in increased total forest areas and thus increased forest carbon stocks. But deforestation in South and Central America, Africa, and South and Southeast Asia has caused significant reduction in the total forest areas and forest carbon stocks. The second research focus has been HWP carbon dynamics. At a global scale, HWP carbon stocks are much smaller when compared with forest carbon stocks. But consistent HWP carbon stock increases can have important implications on the mitigation potential of the forestry sector(managed forests and HWP produced from these forests). Based on life-cycle analysis, studies conducted in the last 10 years have concluded that substituting HWP with energy-intensive materials can result in significant emission reductions. To accurately assess net GHG effects of the forestry sector, it is essential to integrate forest carbon dynamics with life-cycle analysis of HWP carbon stocks/emissions. There are a few important issues that need to be addressed in the future: ① Collect more data and conduct data-based studies to better analyze climate change impacts on forest development and forest carbon stocks, and reduce analysis uncertainty. ② Develop, complete, and improve forest resources inventories, the basis for accurately assessing forest carbon stocks. ③ Develop strategies through sustainable forest management and the best use of wood biomass resources to maximize forestry sector's mitigation contribution within key emission reduction timeframes. ④ Collect and integrate HWP life-cycle data in a systematic way to improve the accuracy of HWP life-cycle analysis and wood substitution assessment. ⑤ Assesse global forestry sector's mitigation contribution by integrating forest management and HWP carbon stocks/emissions analysis at a global scale.

参考文献/References:

[1] EDENHOFER O R, PICHS-MADRUGA Y, SOKONA E, et al. Intergovernmental panel on climate change[C]// Climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge, New York: Cambridge University Press, 2014.
[2] PARIS AGREEMENT. United nation framework convention on climate change[EB/OL].(2018-01-10). http://unfccc.int/files/essential_background/convention/application/pdf/english_paris_agreement.pdf.
[3] HOUGHTON J T, DING Y, GRIGGS D J, et al. Intergovernmental panel on climate change[C]// The scientific basis. contribution of working group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, New York: Cambridge University Press,2001.
[4] READ D J, BEERLING D J, CANNELL M, et al. The role of land carbon sinks in mitigating global climate change[J/OL]. The Royal Society, 2001.(2018-01-16). https://royalsociety.org/~/media/Royal_Society_Content/policy/publications/2001/9996.pdf.
[5] QUÉRÉ C LE, ANDREW R M, CANADELL J G, et al. Global carbon budget 2016[J]. Earth System Science Data, 2016, 7(1): 47-85. DOI:10.5194/essd-8-605-2016.
[6] PAN Y, BIRDSEY R A, FANG J, et al. A large and persistent carbon sink in the world's forests[J]. Science, 2011, 333: 988-993.
[7] GRASSI G, HOUSE J, DENTENER F, et al. The key role of forests in meeting climate targets requires science for credible mitigation[J]. Natural Climate Change, 2017, 7: 220-226. DOI: 10.1038/nclimate3227.
[8] UNFCCC. United Nation Framework Convention on Climate Change, 2009[R]. Tenth Session, Copenhagen: 2009 United Nations Climate Change Conference, 2009-12-07.(2018-01-16). http://unfccc.int/resource/docs/2009/awg10/eng/10a03r03.pdf.
[9] HIRAISHI T, KRUG T, TANABE K, et al. Revised supplementary methods and good practice guidance arising from the Kyoto Protocol[C]//Intergovernmental Panel on Climate Change,2013. Switzerland: IPCC, 2014.
[10] NABUURS G-J. Significance of wood products in forest sector carbon balances[C]// APPS MJ, PRICE DT. Forest ecosystems, forest management and the global carbon cycle. NATO ASI Series I: Global Environmental Change. Berlin, Heidelberg: Springer, 1996.
[11] VOICU M V, SHAW C, KURZ W A, et al.Carbon dynamics on agricultural land reverting to woody land in Ontario, Canada[J]. Journal of Environmental Management, 2017, 193: 318-325. DOI:org/10.1016/j. jenvman.2017.02.019.
[12] NABUURS, G-J, LINDER M, VERKERK P J, et al. First signs of carbon sink saturation in European forest biomass[J]. Nature Climate Change, 2013, 3: 792-796.DOI 10.1038/NCLIMATE1853.
[13] BIRDSEY R, PREGITZER K,LUCIER A. Forest carbon management in the United States: 1600-2100[J]. Journal of Environmental Quality, 2006, 35(4): 1461-1469. DOI: 10.2134/jeq2005.0162.
[14] PIAO S, FANG J, ZHU, B, et al. Forest biomass carbon stocks in China over the past 2 decades: estimation based on integrated inventory and satellite data[J]. Journal of Geophysical Research, 2005, 110: G01006.DOI:10.1029/2005JG000014.
[15] CHEN J, CHEN W, LIU J, et al. Annual carbon balance of Canada's forests during 1895-1996[J]. Global Biogeochemical Cycles, 2000, 14: 839-849.
[16] STINSON G, KURZ W A, SMYTH C E, et al. An inventory-based analysis of Canada's managed forest carbon dynamics, 1990 to 2008[J]. Global Change Biology,2011, 17: 2227-2244.
[17] KÖHL M, LASCO R, CIFUENTES M, et al.Changes in forest production, biomass and carbon: results from the 2015 UN FAO Global Forest Resource Assessment[J]. Forest Ecology and Management, 2015, 352: 21-34. DOI:dx.doi.org/10.1016/j.foreco.2015.05.036.
[18] CHEN J, COLOMBO S J, TER-MIKAELIAN M T, et al. Future carbon storage in harvested wood products from Ontario's crown forests[J]. Canadian Journal of Forest Research, 2008, 38: 1947-1958.
[19] HEATH L S, MALTBY V, MINER R, et al. Greenhouse gas and carbon profile of the U.S. forest products industry value chain[J]. Environmental Science and Technology, 2010, 44: 3999-4005.
[20] WINJUM J K, BROWN S, SCHLAMADINGER B. Forest harvests and wood products: sources and sinks of atmospheric carbon dioxide[J]. Forest Science, 1998, 44: 272-284.
[21] LAUK C, HABERL H, ERB K-H, et al. Global socioeconomic carbon stocks in long-lived products 1900-2008[J]. Environmental Research Letters, 2012, 7(3):1-10.DOI:10.1088/1748-9326/7/3/034023.
[22] APPS M J, KURZ W A, BEUKEMA S J, et al. Carbon budget of the Canadian forest product sector[J]. Environmental Science & Policy, 1999, 2: 25-41.
[23] KOHLMAIER G, KOHLMAIER L, ERIES E, et al. Application of the stock change and the production approach to harvested wood products in the EU-15 countries: a comparative analysis[J]. European Journal of Forest Research, 2007, 126: 209-223. DOI: 10.1007/s10342-006-0130-x.
[24] LATURI J, MIKKOLA J, UUSIVUORI J. Carbon reservoirs in wood products-in-use in Finland: current sinks and scenarios until 2050[J]. Silva Fennica, 2008, 42(2): 307-324.
[25] CHEN J, COLOMBO S J, TER-MIKAELIAN M T, et al. Carbon profile of the managed forest sector in Canada in the 20th century: sink or source?[J]. Environmental Science and Technology, 2014, 48: 9859-9866. DOI: 10.1021/es5005957.
[26] PILLI R., FIORESE G, GRASSI G. EU mitigation potential of harvested wood products[J]. Carbon Balance and Management, 2015. DOI:10.1186/s13021-015-0016-7.
[27] CHEN J, COLOMBO S J, TER-MIKAELIAN M T, et al. Carbon budget of Ontario's managed forests and harvested wood products, 2001-2100[J]. Forest Ecology and Management, 2010, 259: 1385-1398. DOI:10.1016/j.foreco.2010.01.007.
[28] DYMOND C C. Forest carbon in North America: annual storage and emissions from british Columbia's harvest[J]. Carbon Balance and Management, 2012, 7:8.
[29] TER-MIKAELIAN M T, COLOMBO S J, CHEN J. Effects of harvesting on spatial and temporal diversity of carbon stocks in a boreal forest landscape[J]. Ecology and Evolution, 2013, 3: 3738-3750. DOI: 10.1002/ece3.751.
[30] 阮宇, 张小全, 杜凡. 中国木质林产品碳贮量[J]. 生态学报, 2006, 26(12): 4213-4218. RUAN Y, ZHANG X Q, DU F. Carbon stock of harvested wood products in China[J]. Acta Ecologica Sinica, 2006, 26(12): 4213-4218.
[31] 白彦锋, 姜春前, 张守攻. 中国木质林产品碳储量及其减排潜力[J]. 生态学报, 2009, 29(1): 399-405. BAI Y F, JIANG C Q, ZHANG S G. Carbon stock and potential of emission reduction of harvested wood products in China[J]. Acta Ecologica Sinica, 2009, 29(1): 399-405.
[32] 郭明辉, 关鑫, 李坚. 中国木质林产品的碳储存与碳排放[J]. 中国人口·资源与环境, 2010, 20(5): 19-21. GUO M H, GUAN X, LI J. Carbon storage and carbon emission of wood forest products in China[J]. China Population, Resources and Environment, 2010, 20(5): 19-21.
[33] 杨红强, 季春艺, 杨惠, 等. 全球气候变化下中国林产品的减排贡献:基于木质林产品减排功能的核算[J]. 自然资源学报, 2013, 28(12): 2023-2033. YANG H Q, JI C Y, YANG H, et al.Global climate change and China's contribution to carbon reduction: based on carbon storage accounting of Chinese harvested wood products[J]. Journal of Natural Resources, 2013, 28(12): 2023-2033.
[34] 张小标, 杨红强. 基于GFPM的中国林产品碳储效能及碳库结构动态预测[J]. 资源科学, 2015, 37(7): 1403-1413. ZHANG X B, YANG H Q. Dynamic projection of storage efficiency and carbon pool structure of China's harvested wood products based on GFPM[J]. Resources Science, 2015, 37(7): 1403-1413.
[35] GENG A X, YANG H Q, CHEN J, et al. Review of carbon storage function of harvested wood products and the potential of wood substitution in greenhouse gas mitigation[J]. Forest Policy and Economics, 2017, 85(1): 192-200. DOI:10.1016/j.forpol.2017.08.007.
[36] CHEN J, YANG H Q, TER-MIKAELIAN M T, et al. Assessing the greenhouse gas effects of harvested wood products manufactured from managed forests in Canada[J]. Forestry: An International Journal of Forest Research, 2018, 91(2): 193-205. DOI:10.1093/forestry/cpx056.
[37] UPTON B, MINER R, SPINNEY M, et al. The greenhouse gas and energy impacts of using wood instead of alternatives in residential construction in the United States[J]. Biomass & Bioenergy, 2008, 32: 1-10.
[38] NEPAL P, SKOG K E, MCKEEVER D B, et al. Carbon mitigation impacts of increased softwood lumber and structural panel use for nonresidential construction in the United States[J].Forest Products Journal, 2016, 66(1):77-87.
[39] BURSCHEL P, KURSTEN E, LARSON B C, et al.Present role of German forests and forestry in the national carbon budget and options to its increase[J]. Water Air And Soil Pollution, 1993, 70(1/4): 325-340.
[40] PINGOUD K, PERÄLÄ A-L:Scenario analysis of potential wood utilisation in finnish new construction in 1990 and 1994. 2: inventory of carbon stock of wood products in the finnish building stock in 1980, 1990 and 1995[C]// Studies on greenhouse impacts of wood construction. VTT Julkaisuja, Espoo in Finnish: Technical Research Centre of Finland, 2000.
[41] PINGOUD K, PERÄLÄ A-L, SOIMAKALLIO S, et al. Greenhouse gas impacts of harvested wood products[C]// Evaluation and Development of Methods. VTT Tiedotteita, Espoo Res Notes 2189, 2003.
[42] SATHRE R, O'CONNOR J. Meta-analysis of greenhouse gas displacement factors of wood product substitution[J]. Environmental Science & Policy, 2010, 13(2): 104-114.
[43] MCKECHNIE J, COLOMBO S J, CHEN J, et al. Forest bioenergy or forest carbon? Assessing trade-offs in greenhouse gas mitigation with wood-based fuels[J]. Environmental Science & Technology, 2011, 45: 789-795.
[44] TER-MIKAELIAN M T, COLOMBO S J, LOVEKIN D, et al. Carbon debt repayment or carbon sequestration parity? Lessons from a forest bioenergy case study in Ontario, Canada[J]. GCB Bioenergy, 2015, 7: 704-716. DOI:10.1111/gcbb.12198.
[45] PINGOUD K, EKHOLM T, SAVOLAINEN I. Global warming potential factors and warming payback times as climate indicators of forest biomass use[J]. Mitigation and Adaptation Strategies for Global Change, 2012, 17(4): 369-386. DOI:10.1007/s11027-011-9331-9.
[46] SMYEH C E, STINSON G, NEILSON E, et al.Quantifying the biophysical climate change mitigation potential of Canada's forest sector[J]. Biogeosciences, 2014, 11: 1515-3529. DOI:10.5194/bg-11-3515-2014.
[47] TER-MIKAELIAN M T, COLOMBO S J, CHEN J. The burning question: Does forest bioenergy reduce carbon emissions? a review of common misconceptions about forest carbon accounting[J]. Journal of Forestry, 2015, 113(1): 57-68.
[48] LUN F, LI W, LIU Y. Complete forest carbon cycle and budget in China, 1999-2008[J]. Forest Ecology and Management, 2012, 264: 81-89.
[49] 张旭芳, 杨红强, 张小标. 1993-2033年中国林业碳库水平及发展态势[J]. 资源科学, 2016, 38(2): 290-299. ZHANG X F, YANG H Q, ZHANG X B. Development level and trend in Chinese forestry carbon pools from 1989 to 2033[J]. Natural Resources, 2016, 38(2): 290-299
[50] PINGOUD K, POHJOLA J, VALSTA L. Assessing the integrated climatic impacts of forestry and wood products[J]. Silva Fennica, 2010, 44: 155-175.

相似文献/References:

[1]闫少锋,陆茜,张金池*,等.江苏沿海地区NDVI的演变特征及其对区域气候变化的响应[J].南京林业大学学报(自然科学版),2012,36(01):043.[doi:10.3969/j.jssn.1000-2006.2012.01.009]
 YAN Shaofeng,LU Qian,ZHANG Jinchi*,et al.The spatiotemporal evolution characteristics and response of regional climate change of NDVI at Jiangsu coastal areas[J].Journal of Nanjing Forestry University(Natural Science Edition),2012,36(04):043.[doi:10.3969/j.jssn.1000-2006.2012.01.009]
[2]姚玉璧,李耀邦,张谋草,等.陇东黄土高原气候对全球变暖的响应及其对林果的影响[J].南京林业大学学报(自然科学版),2005,29(04):073.[doi:10.3969/j.jssn.1000-2006.2005.04.018]
 YAO Yu-bi,LI Yao-bang,ZHANG Mou-cao,et al.Response on Climate in Longdong Loess Plateau to Globe Warming and Fruit Development Impacted[J].Journal of Nanjing Forestry University(Natural Science Edition),2005,29(04):073.[doi:10.3969/j.jssn.1000-2006.2005.04.018]
[3]韩会庆,张娇艳*,马 庚,等.气候变化对生态系统服务影响的研究进展[J].南京林业大学学报(自然科学版),2018,42(02):184.[doi:10.3969/j.issn.1000-2006.201706007]
 HAN Huiqing,ZHANG Jiaoyan*,MA Geng,et al.Advances on impact of climate change on ecosystem services[J].Journal of Nanjing Forestry University(Natural Science Edition),2018,42(04):184.[doi:10.3969/j.issn.1000-2006.201706007]

备注/Memo

备注/Memo:
基金项目:国家社会科学基金重点项目(14AJY014) 第一作者:陈家新(jiaxin.chen@ontario.ca),研究员,博士。*通信作者:杨红强(yhqnfu@aliyun.com),教授,博士。
更新日期/Last Update: 2018-07-27