[1]周长品,翁启杰,甘四明,等.应用SNaPshot技术对桉树SNP的检测[J].南京林业大学学报(自然科学版),2018,42(04):083-88.[doi:10.3969/j.issn.1000-2006.2017.05055]
 ZHOU Changpin,WENG Qijie,GAN Siming,et al.Application of SNaPshot to detect SNP markers in Eucalyptus[J].Journal of Nanjing Forestry University(Natural Science Edition),2018,42(04):083-88.[doi:10.3969/j.issn.1000-2006.2017.05055]
点击复制

应用SNaPshot技术对桉树SNP的检测
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
42
期数:
2018年04期
页码:
083-88
栏目:
研究论文
出版日期:
2018-07-12

文章信息/Info

Title:
Application of SNaPshot to detect SNP markers in Eucalyptus
文章编号:
1000-2006(2018)04-0083-06
作者:
周长品翁启杰甘四明姬红霞陈升侃王 莉李发根*
中国林业科学研究院热带林业研究所,热带林业研究国家林业局重点实验室,广东 广州 510520
Author(s):
ZHOU Changpin WENG Qijie GAN Siming JI Hongxia CHEN Shengkan WANG Li LI Fagen*
Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
关键词:
单核苷酸多态性 SNaPshot 遗传多样性 桉树
Keywords:
Keywords:SNP marker SNaPshot genetic diversity Eucalyptus spp.
分类号:
Q722.3
DOI:
10.3969/j.issn.1000-2006.2017.05055
文献标志码:
A
摘要:
【目的】SNaPshot是一种单核苷酸多态性(SNP)检测的多重分析技术,具有检测速度快、准确性高、成本低廉等特点。利用多重PCR技术,结合SNaPshot分型方法,在桉树中构建SNP复合分型检测体系,促进SNP技术在桉树遗传图谱构建和无性系鉴定的应用。【方法】利用桉树已有的EST序列设计引物,通过PCR产物直接测序进行SNP标记位点的开发,利用多重PCR技术和SNaPshot分型方法建立SNP复合分型检测体系,并在尾叶桉和细叶桉作图群体的两亲本和6个F1子代,以及16个国内常用的桉树无性系中进行分型检测。【结果】共设计合成12对SNP引物,分为3组(Ⅰ、Ⅱ、Ⅲ)建立了SNP复合分型检测体系,SNP分型情况与测序结果一致。对桉树作图群体的两个亲本和6个F1子代的分型结果进行统计,发现12个SNP标记在6个子代中均发生了分离; 对桉树无性系进行多态性的分析,期望杂合度(He)为0.11~0.51、观测杂合度(Ho)为0.11~0.56,多态性信息含量(PIC)为0.10~0.37,表现为中度或低度多态性。【结论】利用多重PCR和SNaPshot技术可以快速地对桉树进行基因分型,其结果准确可靠,可以用于桉树遗传图谱的构建以及桉树无性系的鉴定等方面研究。
Abstract:
Abstract: 【Objective】The SNaPshot technique, a multiplex PCR method for genotyping SNP markers, is rapid, accurate and cost effective. In this paper, we used multiplex PCR and the SNaPshot technique to establish a multiplex primer assay for the SNaPshot reaction in Eucalyptus spp., in order to promote the application of SNPs in Eucalyptus spp. genetic linkage map construction and identification of the major commercial clones cultivated in China. 【Method】The primers were designed with Eucalyptus ESTs and the PCR products were sequenced using a PCR direct sequencing method to detect SNP loci. The selected SNP markers were used to establish the multiplex primer assay for the SNaPshot reaction. Finally, we applied this method to assay two parents and six F1 mapping population sibs of E. urophylla × E. tereticornis, as well as 16 commercial Eucalyptus clones cultivated in China.【Result】Twelve SNP markers with three groups(I, II and III)were analyzed and the multiplex primer assay for the SNaPshot reaction in Eucalyptus was established. The SNaPshot assay genotyping results were in complete agreement with the PCR product direct sequencing results. The polymorphism diversity of these SNPs was also analyzed; all 12 loci were polymorphic among the six E. urophylla × E. tereticornis sibs and the commercial clones. The expected heterozygosity(He)ranged from 0.11 to 0.51, observed heterozygosity(Ho)ranged from 0.11 to 0.56, and polymorphic information content(PIC)ranged from 0.10 to 0.37, showing medium or low polymorphism.【Conclusion】The multiplex primer assay for the SNaPshot reaction established here is an efficient and accurate method for Eucalyptus genotyping, which will be useful for genetic linkage map construction and identification of Eucalyptus clones.

参考文献/References:

[1] GANAL M W, ALTMANN T, RODER M S. SNP identification in crop plants[J]. Current Opinion in Plant Biology, 2009, 12(2): 211-217. DOI: 10.1016/j.pbi.2008.12.009.
[2] RAFALSKI A. Applications of single nucleotide polymorphisms in crop genetics[J]. Current Opinion in Plant Biology, 2002, 5(2): 94-100. DOI: 10.1016/S1369-5266(02)00240-6.
[3] JACQUELINE B, GARY B, HELEN O S, et al. Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tag data[J]. Plant Physiology, 2003, 132(1): 84-91. DOI: 10.1104/pp.102.019422.
[4] Ik-YOUNG C, HYTEN D L, MATUKUMALLI L K, et al. A soybean transcript map: gene distribution, haplotype and single-nucleotide polymorphism analysis[J]. Genetics, 2007, 176(1): 685-696. DOI: 10.1534/genetics.107.070821.
[5] RICCARDO V, ANDREY Z, MICHELA T, et al. A high quality draft consensus sequence of the genome of a heterozygous grapevine variety[J]. PLoS One, 2007, 2(12): e1326. DOI: 10.1371/journal.pone.0001326.
[6] BRAD B W, EMRICH S J, CHEN H D, et al. SNP discovery via 454 transcriptome sequencing[J]. Plant Journal for Cell & Molecular Biology, 2007, 51(5): 910-918. DOI: 10.1111/j.1365-313X.2007.03193.x.
[7] HUANG X, FENG Q, QIAN Q, et al. High-throughput genotyping by whole-genome resequencing[J]. Genome Research, 2009, 19(6): 1068-1076. DOI: 10.1101/gr.089516.108.
[8] DANIEL R, SANTOS C, PHILLIPS C, et al. A SNaPshot of next generation sequencing for forensic SNP analysis[J]. Forensic Science International: Genetics, 2015, 14: 50-60. DOI: 10.1016/j.fsigen.2014.08.013.
[9] LI L, TIAN Y, LV X, et al. Association analysis of IL-17A and IL-17F polymorphisms in Chinese women with cervical cancer[J]. Genetics and Molecular Research: GMR, 2014, 14(4): 12178-12183. DOI: 10.4238/2015.October.9.6.
[10] BOUAKAZe C, KEYSER C, DE MARTINO S, et al. Identification and genotyping of Mycobacterium tuberculosis complex species by use of a SNaPshot minisequencing-based assay[J]. Journal of Clinical Microbiology, 2010, 48(5): 1758-1766. DOI: 10.1128/JCM.02255-09.
[11] DELEU W, ESTERAS C, ROIG C, et al. A set of EST-SNPs for map saturation and cultivar identification in melon[J]. BMC Plant Biology, 2009, 9(3): 653-655. DOI: 10.1186/1471-2229-9-90.
[12] NAYAK S N, ZHU H, VARGHESE N, et al. Integration of novel SSR and gene-based SNP marker loci in the chickpea genetic map and establishment of new anchor points with Medicago truncatula genome[J]. Theoretical and Applied Genetics, 2010, 120(7): 1415-1441. DOI: 10.1101/gr.089516.108.
[13] 张成才, 谭礼强, 王丽鸳, 等. SNaPshot技术检测茶树SNP研究[J]. 茶叶科学, 2014, 34(2): 180-187. ZHANG C C, TAN L Q, WANG L Y et al. Study of SNaPshot detect SNP markers in tea plant[J]. Journal of Tea Science, 2014, 34(2): 180-187. DOI:10.13305/j.cnki.jts.2014.02.014.
[14] IGLESIAS I, WILTERMANN D. Eucalyptologics information resources on Eucalyptus cultivation worldwide[C]. GIT Forestry Consulting, 2009.
[15] 祁述雄. 中国桉树[M]. 北京: 中国林业出版社, 2002.
[16] 杨民胜, 谢耀坚, 刘杰锋. 中国桉树研究三十年: 1981—2010[M]. 北京: 中国林业出版社, 2011.
[17] MYBURG A A, GRATTAPAGLIA D, TUSKAN G A, et al. The genome of Eucalyptus grandis[J]. Nature, 2014, 509(7505): 356-362. DOI: 10.1038/nature13308.
[18] SILVA-JUNIOR O B, FARIA D A, GRATTAPAGLIA D. A flexible multi-species genome-wide 60K SNP chip developed from pooled resequencing of 240 Eucalyptus tree genomes across 12 species[J]. New Phytologist, 2015, 206(4): 1527-1540. DOI: 10.1111/nph.13322.
[19] NOVAES E, DROST D, FARMERIE W, et al. High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome[J]. BMC Genomics, 2008, 9(1): 312. DOI: 10.1186/1471-2164-9-312.
[20] LI F, ZHOU C, WENG Q, et al. Comparative genomics analyses reveal extensive chromosome colinearity and novel quantitative trait loci in Eucalyptus[J]. PLoS One, 2015, 10(12): e0145144. DOI: 10.1371/journal.pone.0145144.
[21] GAN S M, SHI J S, LI M, et al. Moderate-density molecular maps of Eucalyptus urophylla S. T. Blake and E. tereticornis Smith genomes based on RAPD markers[J]. Genetica, 2003, 118(1): 59-67. DOI: 10.1023/A:1022966018079.
[22] 张晓红, 李发根, 王宇, 等. 桉树EST-PCR产物测序方案的优化[J]. 基因组学与应用生物学, 2009, 28(3): 535-543. ZHANG XH, LI F G, WANG Y, et al. An optimized protocol for sequencing EST-PCR products in Eucalyptus[J]. Genomics and Applied Biology, 2009, 28(3): 535-543. DOI: 10.3969/gab.028.000535.
[23] DENG J, HUANG H, YU X, et al. DiSNPindel: improved intra-individual SNP and InDel detection in direct amplicon sequencing of a diploid[J]. BMC Bioinformatics, 2015, 16(1): 343. DOI: 10.1186/s12859-015-0790-y.
[24] DIERINGER D, SCHLÖ TTERER C. microsatellite analyser(MSA): a platform independent analysis tool for large microsatellite data sets[J]. Molecular Ecology Notes, 2003, 3(1): 167-169. DOI: 10.1046/j.1471-8286.2003.00351.x.
[25] ROHLF F J. NTSYS-pc. Numerical taxonomy and multivariate analysis system, version 2.1[EB/OL].
[2017-01-12]. http://www.exeter software. com/cat/ntsyspc/ntsyspc.html.
[26] BROOKES A J. The essence of SNPs[J]. Gene, 1999, 234(2): 177-186. DOI: 10.1016/S0378-1119(99)00219- x.
[27] HOSSEINZADEHCOLAGAR A, HAGHIGHATNIA M J, AMIRI, et al. Microsatellite(SSR)amplification by PCR usually led to polymorphic bands: evidence which shows replication slippage occurs in extend or nascent DNA strands[J]. Molecular Biology Research Communications, 2016, 5(3), 167-174.
[28] SCHLÖTTERER C. The evolution of molecular markers-just a matter of fashion?[J]. Nature Reviews Genetics, 2004, 5(1), 63-69. DOI: 10.1038/nrg1249
[29] ZHOU C, HE X, LI F, et al. Development of 240 novel EST-SSRs in Eucalyptus L'Herit[J]. Molecular Breeding, 2014, 33(1): 221-225. DOI: 10.1007/s11032-013-9923-z.
[30] SEIFERT S, VOMAM B, FINKELDEY R. A set of 17 single nucleotide polymorphism(SNP)markers for European beech(Fagus sylvatica L.)[J]. Conservation Genetics Resources, 2012, 4(4): 1045-1047. DOI: 10.1007/s12686-012-9703-9.
[31] MONFORTE A J, GARCIA-MASas J, ARUS P. Genetic variability in melon based on microsatellite variation[J]. Plant Breeding, 2003, 122(122): 153-157. DOI: 10.1046/j.1439-0523.2003.00848.x.
[32] TORRES-DINI D, BENNADJI Z, CABRERA M, et al. Use of SSR-tools for clone certification in Uruguayan Eucalyptus grandis and Eucalyptus dunnii breeding programs[J]. BMC Proceedings, 2011, 5(7): 2134-2146. DOI: 10.1186/1753-6561-5-S7-P58.

备注/Memo

备注/Memo:
基金项目:广西创新驱动发展项目(桂科AA17204087-3); 中国林科院基本科研业务费专项项目(CAFYBB2017SY018); 广东省自然科学基金项目(2016A030310007) 第一作者:周长品(zhouchangpin@126.com),助理研究员。*通信作者:李发根(lifagen2002@126.com),副研究员。
更新日期/Last Update: 2018-07-27