[1]代婷婷,马 骏,徐雁南*.基于Agisoft PhotoScan 的无人机影像自动拼接在风景园林规划中的应用[J].南京林业大学学报(自然科学版),2018,42(04):165-170.[doi:10.3969/j.issn.1000-2006.201707004]
 DAI Tingting,MA Jun,XU Yannan*.Application of unmanned aerial vehicle(UAV)image automatic stitchingin landscape planning based on Agisoft PhotoScan[J].Journal of Nanjing Forestry University(Natural Science Edition),2018,42(04):165-170.[doi:10.3969/j.issn.1000-2006.201707004]
点击复制

基于Agisoft PhotoScan 的无人机影像自动拼接在风景园林规划中的应用
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
42
期数:
2018年04期
页码:
165-170
栏目:
研究论文
出版日期:
2018-07-12

文章信息/Info

Title:
Application of unmanned aerial vehicle(UAV)image automatic stitching in landscape planning based on Agisoft PhotoScan
文章编号:
1000-2006(2018)04-0165-06
作者:
代婷婷马 骏徐雁南*
南京林业大学林学院,南方现代林业协同创新中心,江苏 南京 210037
Author(s):
DAI Tingting MA Jun XU Yannan*
College of Forestry, Nanjing Forestry University, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing 210037, China
关键词:
无人机 自动拼接 Agisoft PhotoScan 风景园林规划 南京神策门公园
Keywords:
Keywords:unmanned aerial vehicle(UAV) automatic stitching Agisoft PhotoScan landscape planning Shence Gate Park in Nanjing
分类号:
TU986
DOI:
10.3969/j.issn.1000-2006.201707004
文献标志码:
A
摘要:
【目的】通过构建研究区三维可视化直观模型,为大尺度风景园林规划设计提供前期分析资料。【方法】以南京神策门公园为研究区,通过轻小型无人机低空航测方式获取原始数据,利用Agisoft PhotoScan程序进行数据处理,自动对齐输入影像并进行优化处理,定向提取密集点云,建立不规则三角网(TIN)及数字正射影像(DOM)的制作。 根据生成的三维可视化直观模型建立研究区域完整的正射影像,同时结合ArcGIS和ENVI等软件进行空间信息量化分析。【结果】无人机观测值与GPS观测值对比拟合得到线性回归模型,二者相关系数R=0.994; 将输出的正射影像在ArcGIS中进行空间分析得到神策门公园绿地面积为36 974.78 m2,在ENVI中进行监督分类得到研究区土地利用类型统计表,其中绿地占比为64.34%。【结论】Agisoft PhotoScan软件在处理无人机影像时自动拼接精度较高,拼接影像时效性较好; 对于较大尺度范围,能够有效提取风景园林规划设计前期分析所需的场地地理信息,并实现信息的量化分析。
Abstract:
Abstract: 【Objective】Based on the developing trends of landscape architecture planning, this paper presents a three-dimensional visualization model for the study area to provide pre-analysis data for the planning and design of large-scale landscape architecture. 【Method】Nanjing Shence Gate Park was selected as the research site, and the primary data were acquired using a small unmanned aerial vehicle(UAV)via measurement of low latitude. The Agisoft PhotoScan software could be used for data processing, including the alignment and optimization of an input image, the orientation extraction of a dense point cloud, and the establishment of a triangulated irregular network(TIN)and a digital ortho image map(DOM). The complete DOM of the research area could then be established based on the three-dimensional visualization model. The ArcGIS and ENVI softwares could be used alongside this for quantitative spatial information analysis.【Result】The correlation coefficient between the observed global positioning system(GPS)value and the UAV, which, as determined using the linear regression equation, is high at R=0.994. According to the spatial analysis conducted using ArcGIS, the green area in Shence Gate Park covered 36 974.78 m2. The table of land use types in the study area was obtained through the supervised classification(maximum likelihood classification)conducted using ENVI, and the research area was divided into four different land use types: water, green land, buildings and roads, and the green land rate was 64.34%.【Conclusion】The Agisoft PhotoScan software could automatically stitch UAV images with high precision. The stitched image had the advantage of timeliness and exhibits a large scale range, which could effectively create a mosaic of multi-UAV images and extract the geographical information of the site required for pre-analysis during landscape planning and design, and allowed the information to be quantitatively analyzed.

参考文献/References:

[1] 李砚祖. 环境艺术设计的新视界[M]. 北京:中国人民大学出版社, 2002.
[2] 吴为廉. 景观与景园建筑工程规划设计[M]. 北京:中国建筑工业出版社, 2005.
[3] 张斌. 计算机技术在园林环境设计中的应用探索[J]. 华中农业大学学报, 1999, 18(5):488-491. DOI:10.13300/j.cnki.hnlkxb.1999. 05.021. ZHANG B. Applied study on computer technique application in landscape design[J]. Journal of Huazhong Agricultural University, 1999,18(5):488-491.
[4] 朱道萸. AUTOCAD在园林规划设计中的应用体会[J]. 中国园林, 1998, 14(3):51-52.
[5] 侯碧清. “3S”在株洲园林地理信息系统中的应用研究[J]. 中国园林, 2004, 20(5):61-65. DOI: 10.3969/j.issn.1000-6664.2004.05.016. HOU B Q.The applcation research of the “3S” technology in the investigation of landscape architecture and establishment of GIS in Zhuzhou[J].Chinese Landscape Architecture,2004,20(5):61-65.
[6] 代金晶, 周文龙, 赵卫权,等. Google Earth和3S技术在喀斯特示范农业规划中的应用初探[J]. 贵州科学, 2014, 32(6):20-25. DOI: 10.3969/j.issn.1003-6563.2014.06.005. DAI J J,ZHOU W L,ZHAO W Q.A preliminary application of Google Earth and 3S technology in Karst agricultural demonstration planning[J].Guizhou Science,2014,32(6):20-25.
[7] 许浩. 3S技术在日本筑波山梅林公园规划上的应用[J]. 中国园林, 2005, 21(3):17-19. DOI: 10.3969/j.issn.1000-6664.2005.03.003. XU H. Application of 3S technology on the planning process of Tsukuba Bailin Park, Japan[J]. Chinese Landscape Architecture, 2005,21(3):17-19.
[8] 余淮, 杨文. 一种无人机航拍影像快速特征提取与匹配算法[J]. 电子与信息学报, 2016, 38(3):509-516. DOI: 10.11999/JEIT150676. YU H, YANG W.A fastfeature extraction and matching algorithm for unmanned aerial vehicle images[J].Journal of Electronics & Information Technology,2016, 38(3):509-516.
[9] 尚海兴, 黄文钰. 无人机低空遥感影像的自动拼接技术研究[J]. 西北水电, 2012(2):14-18. DOI: 10.3969/j.issn.1006-2610.2012.02. 004. SHANG H X, HUANG W Y. Study on automatic jointing technology for remote sensing images by drone at low level[J]. Northwest Hydropower, 2012(2):14-18.
[10] 付洁. 无人机遥感图像拼接算法研究[D]. 桂林:广西师范大学, 2015. FU J.Algorithm research of UAV remote sensing image mosaic[D]. Guilin:Guangxi Normal University, 2015.
[11] 徐秋辉. 无控制点的无人机遥感影像几何校正与拼接方法研究[D]. 南京:南京大学, 2013. XU Q H.A method of geometric correction and mosaic of unmanned aerial vehicle remote sensing image without ground control points[D]. Nanjing:Nanjing University, 2013.
[12] 何雅. 基于无人机的低空遥感影像拼接技术的研究[D]. 长春:吉林大学, 2016. HE Y.Research on stitching technology of low altitude remote sensing image based on unmanned aerial vehicle[D]. Changchun:Jilin University, 2016.
[13] 陈继溢, 孙杰, 张力,等.无地面控制的无人机影像全自动快速拼接[J].遥感信息, 2015(2):26-30. DOI: 10.3969/j.issn.1000-3177.2015. 02.004. CHEN J Y, SUN J, ZHANG L,et al. Full automatic and fast mosaicking of UAV images without ground control data[J]. Remote Sensing Information, 2015(2):26-30.
[14] 刘彬, 陈向宁, 郭连朋. 无人机海量遥感影像快速自动拼接算法研究[J]. 武汉大学学报(工学版), 2015, 48(2):263-268. DOI: 10.14188/j.1671-8844.2015-02-024. LIU B, CHEN X L, GUO L P. Research on fast automatic stitching algorithm of massive UAV remote sensing images[J].Engineering Journal of Wuhan University, 2015, 48(2):263-268.
[15] WANG Y, CHEN Y, XIE D. Automatic mosaic method of UAV water-area images based on POS data[C]// Proceedings of the 3rd International Conference on Multimedia Technology(ICMT 2013). Berlin Heidelberg: Springer International Publishing, 2014:53-62.
[16] MA Y, ZHAO Y, CAO X. Mono-SLAM based method for stitching images of sequence from UAV[J]. Journal of System Simulation, 2016,28(10):2349-2355. DOI:10.16182/j.cnki.joss.2016.10.009.
[17] HOU T Y, YOU H J, SUN X. An UAV image automatic stitching method taking satellite image as base map[J]. Science of Surveying & Mapping, 2015,40(6):11-16. DOI: 10.16251/j.cnki. 1009-2307.2015.06.003.
[18] LI M, CHEN R, ZHANG W, et al. A stereo dual-channel dynamic programming algorithm for UAV image stitching[J]. Sensors, 2017, 17(9):2060. DOI: 10.3390/s17092060.
[19] YAHYANEJAD S, RINNER B. A fast and mobile system for registration of low-altitude visual and thermal aerial images using multiple small-scale UAVs[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2015, 104:189-202.
[20] 贾银江, 徐哲男, 苏中滨,等. 基于优化SIFT算法的无人机遥感作物影像拼接[J]. 农业工程学报, 2017, 33(10):123-129. DOI: 10.11975/j.issn.1002-6819.2017.10.016. JIA Y J, XU Z N, SU Z B,et al. Mosaic of crop remote sensing images from UAV based on improved SIFT algorithm[J].Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(10): 123-129.
[21] 吴成东, 张润, 刘宝德,等. 基于无人机航拍图像拼接算法的优化[J]. 沈阳建筑大学学报(自然科学版), 2015(1):182-192. WU C D, ZHANG R, LIU B D, et al. An optimization algorithm for stiching of aerial images taken by UAV[J]. Journal of Shenyang Jianzhu University(Natural Science), 2015(1):182-192.
[22] 杨世沛, 陈杰, 周莉,等. 一种基于SIFT的图像特征匹配方法[J]. 电子测量技术, 2014, 37(6):50-53. DOI: 10.3969/j.issn.1002-7300. 2014.06.013. YANG S P, CHEN J, ZHOU L, et al. Image feature matching method based on SIFT[J]. Electronic Measurement Technology, 2014, 37(6):50-53.
[23] LOWE D G. Distinctive image features from scale-invariant key points[J]. International Journal of Computer Vision, 2004, 60(2):91-110.
[24] NGUYEN T, PARK E A, HAN J, et al. Object detection using scale invariant feature transform[C]// Genetic and evolutionary computing. Berlin Heidelbery: Springer International Publishing, 2014:65-72.
[25] XING C, WANG J, XU Y. A method for building a mosaic with UAV images[J]. International Journal of Information Engineering & Electronic Business, 2010, 2(1):9-15.
[26] 胡同喜, 牛雪峰, 谭洋,等. 基于SURF算法的无人机遥感影像拼接技术[J]. 测绘通报, 2015(1):55-58. DOI: 10.13474/j.cnki.11-2246. 2015.0010. HU T X, NIU X F, TAN Y, et al. Unmanned aerial vehicle images mosaic based on SURF algorithm[J].Bulletin of Surveying and Mapping, 2015(1):55-58.
[27] 王民, 权宇寰, 党晓棠,等. 基于改进SURF算法的无人机遥感图像配准[J]. 工业控制计算机, 2014, 27(7):135-136.DOI: 10.3969/j.issn.1001-182X.2014.07.060. WANG M, QUAN Y H, DANG X T.UAV remote sensing image registration based on improved SURF algorithm[J]. Industrial Control Computer,2014, 27(7):135-136.
[28] SAVAGO BENITO M. Speeded up robust features(SURF): performance test[Z].(2017-07-01)https://link.springer.com/chapter/10.1007%2F11744023_32 2013.
[29] KALIA R, LEE K D, SAMIR B V R, et al. An analysis of the effect of different image preprocessing techniques on the performance of SURF: speeded up robust features[C]// Frontiers of Computer Vision. IEEE, 2011:1-6.
[30] 黄莺. 基于ORB和SIFT的特征提取算法[J]. 哈尔滨师范大学自然科学学报,2017, 33(2):25-29. DOI: 10.3969/j.issn.1000-5617. 2017.02.007. HUANG Y. Feature detection algorithm based on ORB and SIFT[J]. Nature Science Journal of Harbin Normal University, 2017, 33(2): 25-29.
[31] 单宝明, 胥喜龙. 一种结合ORB算法的SIFT图像配准算法[J]. 工业仪表与自动化装置, 2017(2):27-30. DOI: 10.3969/j.issn. 1000-0682.2017.02.006. SHAN B M, XU X L.A SIFT image registration algorithm combined with ORB algorithm[J]. Industrial Instrumentation & Automation, 2017(2):27-30.
[32] RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: An efficient alternative to SIFT or SURF[C]// IEEE international conference on computer vision. IEEE, 2012:2564-2571.
[33] VISWANATH P, SWAMI P, DESAPPAN K, et al. ORB in 5 ms: an efficient SIMD friendly implementation[C]// Asian conference on computer vision. Berlin Heidelberg: Springer International Publishing, 2014:675-686.
[34] 刘海娟, 张婷, 侍昊,等. 基于RF模型的高分辨率遥感影像分类评价[J]. 南京林业大学学报(自然科学版), 2015,39(1):99-103. DOI: 10.3969/j.issn.1000-2006.2015.01.001. LIU H J, ZHANG T, SHI H, et al. Classification evaluation on high resolution remote sensing image based on RF[J]. Journal of Nanjing Forestry University(Natural Sciences Edition),2015, 39(1):99-103.
[35] 赵云景, 龚绪才, 杜文俊,等. PhotoScan Pro软件在无人机应急航摄中的应用[J]. 国土资源遥感, 2015, 27(4):179-182. DOI: 10.6046/ gtzyyg.2015.04.27. ZHAO Y J, GONG X C, DU W J, et al. UAV imagery data processing for emergency response based on PhotoScan Pro[J]. Remote Sensing for Land and Resources,2015,27(4):179-182.
[36] 王玮, 王浩, 李卫正, 等. 基于小型无人机摄影测量的江南景观水资源综合利用分析[J]. 南京林业大学学报(自然科学版), 2018,42(1):7-14.DOI:10.3969/j.issn.1000-2006.201705061. WANG W, WANG H, LI W Z, et al. Analysis on complete utilization of landscape water resources based on UAV digital photogrammetry technology[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2018, 42(1): 7-14.
[37] 李秀全, 陈竹安, 张立亭. 非量测相机影像三维模型构建及精度检验[J]. 测绘科学, 2016, 41(6):144-147. DOI:10.16251/j.cnki. 1009-2307.2016.06.031. LI X Q, CHEN Z A, ZHANG L T. 3D model construction of non-metric camera images and its accuracy test[J]. Science of Surveying and Mapping,2016,41(6):144-147.
[38] 张洋洋, 刘海娟, 张婷,等. 基于SDA和CART算法的面向对象分类研究[J]. 南京林业大学学报(自然科学版), 2015, 39(3):6-12. DOI: 10.3969/j.issn.1000-2006.2015.03.002. ZHANG Y Y, LIU H J, ZHANG T, et al. Object-oriented classification based on SDA and CART algorithm[J]. Journal of Nanjing Forestry University(Natural Sciences Edition),2015, 39(3):6-12.
[39] 俞正祥, 韩广忠, 蔡体久,等. 基于GF-1遥感数据的大兴安岭林区雪水当量反演[J]. 南京林业大学学报(自然科学版), 2017,41(3):105-111. DOI: 10.3969/j.issn.1000-2006.201605013. YU Z X, HAN G Z, CAI T J, et al. Comparison between GF-1 data and Landsat-8 data in inversing SWE of the forest in the northern of Daxing'an Mountain[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2017,41(3):105-111.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金青年科学基金项目(51608271); 国家自然科学基金项目(31470579) 第一作者:代婷婷(2287437747@qq.com)。*通信作者:徐雁南(nfuxyn@126.com),教授。
更新日期/Last Update: 2018-07-27