[1]王佳懿,李泰仑,王天女,等.短小芽孢杆菌LC01的鉴定及其芽孢漆酶性质的研究[J].南京林业大学学报(自然科学版),2018,42(05):113-120.[doi:10.3969/j.issn.1000-2006.201609021]
 WANG Jiayi,LI Tailun,WANG Tiann,et al.Identification of Bacillus pumilus LC01 and characterization of its spore laccase[J].Journal of Nanjing Forestry University(Natural Science Edition),2018,42(05):113-120.[doi:10.3969/j.issn.1000-2006.201609021]
点击复制

短小芽孢杆菌LC01的鉴定及其芽孢漆酶性质的研究
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
42
期数:
2018年05期
页码:
113-120
栏目:
研究论文
出版日期:
2018-09-15

文章信息/Info

Title:
Identification of Bacillus pumilus LC01 and characterization of its spore laccase
文章编号:
1000-2006(2018)05-0113-08
作者:
王佳懿李泰仑王天女卢 磊*
东北林业大学生命科学学院,黑龙江 哈尔滨 150040
Author(s):
WANG Jiayi LI Tailun WANG Tiannü LU Lei*
College of Life Sciences, Northeast Forestry University, Harbin 150040, China
关键词:
短小芽孢杆菌 漆酶 酶学性质 染料脱色
Keywords:
Bacillus pumilus laccase enzyme characterization dye decolorization
分类号:
Q814
DOI:
10.3969/j.issn.1000-2006.201609021
文献标志码:
A
摘要:
【目的】对前期获得的1株具有较高漆酶活性的细菌菌株LC01进行鉴定及相关酶学性质研究,以开发具有较好工业应用特性的细菌漆酶。【方法】通过形态观察和生理生化实验,结合16S rDNA序列分析对菌株进行鉴定,测定其芽孢漆酶在不同条件下的催化性质及染料降解能力。【结果】经鉴定菌株LC01为短小芽孢杆菌,该菌株的芽孢漆酶氧化底物2,2'-连氮-二(3-乙基苯并噻唑-6-磺酸)、丁香醛连氮和2,6-二甲氧基苯酚的最适pH分别为3.0、6.6和8.6,以丁香醛连氮为底物的最适催化温度为80 ℃,在pH 9.0放置10 d或50 ℃处理10 h后均有较高活性。在pH 9.0时,芽孢漆酶-介体系统能有效脱色不同结构的染料。对染料活性黑5和靛红反应1 h后脱色率达90%以上,对RB亮蓝的脱色6 h后也达到了90%。【结论】短小芽孢杆菌LC01的芽孢漆酶能有效脱色染料且在碱性和高温条件下具有良好稳定性,表明其在多种工业领域具有较好的应用前景。
Abstract:
【Objective】The previously isolated bacterial strain Bacillus pumilis LC01 displaying high laccase activity was presently investigated to determine spore laccase activity, with the goal of obtaining bacterial laccase with excellent properties for industrial applications. 【Method】LC01 was identified by morphology observation, physiological and biochemical tests, and 16S rDNA sequence analysis. The catalytic properties and dye degradation ability of the spore laccase were investigated under different conditions. 【Result】LC01 was identified as B. pumilus. The optimum pH of LC01 spore laccase was 3.0, 6.6 and 8.6 using 2,2'-2(3-ethylbenzothiazole-6-sulfonic acid), syringaldehyde, and 2,6-dimethoxyphenol as substrates, respectively. The spore laccase showed an optimal temperature of 80 ℃for syringaldazine oxidation. Activity was retained at a high level after incubation at pH 9.0 for 10 days or 50 ℃ for 10 h. The spore laccase-mediator system could efficiently decolorize different synthetic dyes. More than 90% of reactive black 5 and indigo carmine were decolorized within 1 h. Approximately 90% of remazol brilliant blue R was also decolorized after 6 h.【Conclusion】The pronounced efficiency of dye decolorization and good stability under alkali and high temperature conditions indicate the potential of the spore laccase of B. pumilus strain LC01 for diverse industrial applications.

参考文献/References:

[1] PALIWAL R, UNIYAL S, RAI J P N. Evaluating the potential of immobilized bacterial consortium for black liquor biodegradation[J]. Environmental Science and Pollution Research, 2015,22(9):6842-6853. DOI:10.1007/s11356-014-3872-x.
[2] CHAUHAN P S, GORADIA B, SAXENA A. Bacterial laccase: recent update on production, properties and industrial applications[J]. Biotech, 2017,7(5):323. DOI: 10.1007/s13205-017-0955-7.
[3] TRUBITISINA L I, TISHCHENKO S V, GABDULKHAKOV A G, et al. Structural and functional characterization of two-domain laccase from Streptomyces viridochromogenes[J]. Biochimie, 2015,112:151-159. DOI:10.1016/j.biochi.2015.03.005.
[4] UPADHYAY P, SHRIVASTAVA R, AGRAWAL P K. Bioprospecting and biotechnological applications of fungal laccase[J]. Biotech, 2016(1):15. DOI: 10.1007/s13205-015-0316-3.
[5] TELKE A A, GHODAKE G S, KALYANI D C, et al. Biochemical characteristics of a textile dye degrading extracellular laccase from a Bacillus sp. ADR[J]. Bioresource Technology, 2011,102(2):1752-1756.DOI:10.1016/j.biortech.2010.08.086.
[6] MOLLANIA N, HEIDARI M, KHAJEH K. Catalytic activation of Bacillus laccase after temperature treatment: Structural & biochemical characterization[J]. International Journal of Biological Macromolecules, 2018,109(1):49-56. DOI: 10.1016/j.ijbiomac.2017.12.003.
[7] LUO Q, CHEN Y, XIA J, et al. Functional expression enhancement of Bacillus pumilus CotA-laccase mutant WLF through site-directed mutagenesis[J]. Enzyme and Microbial Technology, 2018,109:11-19. DOI: 10.1016/j.enzmictec.2017.07.013.
[8] KHODAKARAMI A, GOODARZI N, HOSEINZADEHDEHKORDI M, et al. Rational design toward developing a more efficient laccase: catalytic efficiency and selectivity[J]. International Journal of Biological Macromolecules, 2018,112:775-779. DOI: 10.1016/j.ijbiomac.2018.02.019.
[9] 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001.
DONG X Z, CAI M Y. Manual of systematic identification for common bacteria[M]. Beijing: Science Press, 2001.
[10] WEISBURG W G, BARNS S M, PELLETIER D A, et al. 16S ribosomal DNA amplification for phylogenetic study[J]. Journal of Bacteriology, 1991,173(3):697-703. DOI:10.1128/jb.173.2.697-703.1991.
[11] 李国富, 栗君, 卢磊, 等. 解淀粉芽孢杆菌LC03的分离及其芽孢杆菌漆酶性质研究[J]. 北京林业大学学报, 2013,35(3):116-121. DOI:10.13332/j.1000-1522.2013.03.002.
LI G F, LI J, LU L, et al. Isolation of laccase-producing strain Bacillus amyloliquefaciens LC03 and characterization of its spore laccase[J]. Journal of Beijing Forestry University, 2013,35(3):116-121.
[12] LU L, ZHAO M, WANG T N, et al. Characterization and dye decolorization ability of an alkaline resistant and organic solvents tolerant laccase from Bacillus licheniformis LS04[J]. Bioresource Technology, 2012,115:35-40. DOI: 10.1016/j.biortech.2011.07.111.
[13] CHEN Y, LUO Y, ZHOU W, et al. Improving the catalytic efficiency of Bacillus pumilus CotA-laccase by site-directed mutagenesis[J]. Applied Microbiology and Biotechnology, 2017,101(5):1935-1944. DOI: 10.1007/s00253-016-7962-1.
[14] SIROOSI M, AMOOZEGAR M A, KHAJEH K. Purification and characterization of an alkaline chloride-tolerant laccase from a halotolerant bacterium, Bacillus sp. strain WT[J]. Journal of Molecular Catalysis B: Enzymatic, 2016,134(Part A):89-97. DOI: 10.1016/j.molcatb.2016.10.001.
[15] ZHANG C, DIAO HW, LU FX, et al. Degradation of triphenylmethane dyes using a temperature and pH stable spore laccase from a novel strain of Bacillus vallismortis[J]. Bioresource Technology, 2012,126:80-86.DOI: 10.1016/j.biortech.2012.09.055.
[16] HELD C, KANDELBAUER A, SCHROEDER M, et al. Biotransformation of phenolics with laccase containing bacterial spores[J]. Environment Chemistry Letters, 2005,3(2):74-77.DOI: 10.1007/0311-005-0006-1.
[17] 厉娜, 栗君, 卢磊, 等. 固定化漆酶在染料脱色中的应用[J]. 南京林业大学学报(自然科学版), 2014,38(5):129-133. DOI: 10.3969/j.issn.1000-2006.2014.05.025.
LI N, LI J, LU L, et al. Application of immobilized laccase in dye decolorization[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2014,38(5):129-133.
[18] SENTHIVELAN T, KANAGARAJ J, PANDA R C. Recent trends in fungal laccase for various industrial applications: an eco-friendly approach: a review[J]. Biotechnology and Bioprocess Engineering, 2016,21(1):19-38. DOI: 10.1007/s12257-015-0278-7.
[19] WANG Z X, LIU J Y, NING Y W, et al. Eichhornia crassipes: Agro-waster for a novel thermostable laccase production by Pycnoporus sanguineus SYBC-L1[J]. Journal of Bioscience and Bioengineering, 2017,123(2):163-169. DOI: 10.1016/j.jbiosc.2016.09.005.
[20] SCHEIBLBRANDNER S, BRESLMAYR E, CSARMAN F, et al. Evolving stability and pH-dependent activity of the high redox potential Botrytis aclada laccase for enzymatic fuel cells[J]. Scientific Reports, 2017,7:13688. DOI:10.1038/s41598-017-13734-0.
[21] 周稳, 管政兵, 蔡宇杰, 等. 芽孢杆菌漆酶的研究进展[J]. 微生物学通报, 2015,42(7):1372-1383. DOI: 10.13344/j.microbiol.china.140781.
ZHOU W, GUAN Z B, CAI Y J, et al. Progress in the Bacillus laccase[J]. Microbiology China, 2015,42(7):1372-1383.
[22] SONDHI S, SHARMA P, SAINI S, et al. Purification and characterization of an extracellular, thermo-alkali-stable, metal tolerant laccase from Bacillus tequilensis SN4[J]. PLoS One, 2014,9(5):e96951. DOI: 10.1371/journal.pone.0096951.
[23] MARTINS L O, SOARES C M, PEREIRA M M, et al. Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat[J]. Journal of Biological Chemistry, 2002,277(21):18849-18859. DOI: 10.1074/jbc.M200827200.
[24] LIU H, CHENG Y, DU B, et al. Overexpression of a novel thermostable and chloride-tolerant laccase from Thermus thermophilus SG0.5JP17-16 in Pichia pastoris and its application in synthetic dye decolorization[J]. PLoS One, 2015,10(3):e0119833. DOI: 10.1371/journal.pone.0119833.
[25] 王天女, 李国富, 赵敏, 等. 重组血红密孔菌漆酶在染料脱色中的应用[J]. 南京林业大学学报(自然科学版), 2016,40(1):92-96. DOI:10.3969/j.issn.1000-2006.2016.01.015.
WANG T N, LI G F, ZHAO M, et al. Application of recombinant Pycnoporus sanguineus laccase in dye decolorization[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2016,40(1):92-96.
[26] REISS R, IHSSEN J, THONY-MEYER L. Bacillus pumilus laccase: a heat stable enzyme with a wide substrate spectrum[J]. BMC Biotechnology, 2011,11:9. DOI: 10.1186/1472-6750-11-9.
[27] LI H X, ZHANG R J, TANG L, et al. In vivo and in vitro decolorization of synthetic dyes by laccase from solid state fermentation with Trametes sp. SYBC-L4[J]. Bioprocess and Biosystems Engineering, 2014,37(12):2597-2605. DOI: 10.1007/s00449-014-1237-y.
[28] CAMPOS P A, LEVIN L N, WIRTH S A. Heterologous production, characterization and dye decolorization ability of a novel thermostable laccase isoenzyme from Trametes trogii BAFC 463[J]. Process Biochemistry, 2016,51(7):895-903. DOI: 10.1016/j.procbio.2016.03.015.
[29] SHI X W, LIU Q, MA J S, et al. An acid-stable bacterial laccase identified from the endophyte Pantoea ananatis Sd-1 genome exhibiting lignin degradation and dye decolorization abilities[J]. Biotechnology Letters, 2015,37(11):2279-2288. DOI:10.1007/s10529-015-1914-1.

相似文献/References:

[1]颜爱勤,吴小芹,叶建仁*,等.短小芽孢杆菌JK-SX001非蛋白抗菌物质研究[J].南京林业大学学报(自然科学版),2012,36(03):013.[doi:10.3969/j.jssn.1000-2006.2012.03.004]
 YAN Aiqin,Wu Xiaoqin,YE Jianren*,et al.Isolation, antifungal effect and characteristics of non-protein substancesproduced by Bacillus pumilus JK-SX001[J].Journal of Nanjing Forestry University(Natural Science Edition),2012,36(05):013.[doi:10.3969/j.jssn.1000-2006.2012.03.004]
[2]房小雪,郑 楠,赵 敏*.新月弯孢霉高产漆酶菌株的诱变及其培养条件优化[J].南京林业大学学报(自然科学版),2014,38(02):117.[doi:10.3969/j.issn.1000-2006.2014.02.022]
 FANG Xiaoxue,ZHENG Nan,ZHAO Min*.Mutation and culture conditions optimization of Curvularia lunata forhigh producing strain of laccase[J].Journal of Nanjing Forestry University(Natural Science Edition),2014,38(05):117.[doi:10.3969/j.issn.1000-2006.2014.02.022]

备注/Memo

备注/Memo:
收稿日期:2017-09-07 修回日期:2018-05-15 基金项目:中央高校基本科研业务费专项资金项目(2572017CA22); 国家自然科学基金项目(31200394) 第一作者:王佳懿(wangjiayi@nefu.edu.cn)。*通信作者:卢磊(lulei82@126.com),副教授。
更新日期/Last Update: 2018-09-15