[1]王晶晶,毕华兴*,孙于卜,等.果树树冠遮阴模型的改进[J].南京林业大学学报(自然科学版),2018,42(05):135-140.[doi:10.3969/j.issn.1000-2006.201711049]
 WANG Jingjing,BI Huaxing*,SUN Yubo,et al.Improved model of canopy shading for fruit tree[J].Journal of Nanjing Forestry University(Natural Science Edition),2018,42(05):135-140.[doi:10.3969/j.issn.1000-2006.201711049]
点击复制

果树树冠遮阴模型的改进
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
42
期数:
2018年05期
页码:
135-140
栏目:
研究论文
出版日期:
2018-09-15

文章信息/Info

Title:
Improved model of canopy shading for fruit tree
文章编号:
1000-2006(2018)05-0135-06
作者:
王晶晶1毕华兴1234*孙于卜1段航旗1彭瑞东1
1.北京林业大学水土保持学院,北京 100083; 2.北京林业大学,山西吉县森林生态系统国家野外科学观测研究站,北京 100083; 3.北京林业大学,水土保持国家林业局重点实验室,北京市水土保持工程技术研究中心,林业生态工程教育部工程研究中心,北京 100083; 4.科技创新服务能力建设-科研基地建设-林果业生态环境功能提升协同创新中心,北京 102206
Author(s):
WANG Jingjing1 BI Huaxing1234* SUN Yubo1 DUAN Hangqi1 PENG Ruidong1
1. College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; 2. Ji County Station, Chinese National Ecosystem Research Network(CNERN), Beijing Forestry University, Beijing 100083, China; 3. Key Laboratory of State Forestr
关键词:
果农间作系统 果树树冠 遮阴范围 遮阴模型 相似性原理
Keywords:
apple-wheat intercropping system canopy of apple tree shading range model of canopy shading principle of similarity
分类号:
S157
DOI:
10.3969/j.issn.1000-2006.201711049
文献标志码:
A
摘要:
【目的】农林复合系统林下太阳辐射作为间作作物光合作用的能量来源,直接影响着间作作物的生态过程和生产力水平。研究果农间作系统内果树的遮阴范围和遮阴强度对果农间作系统配置及间作距离的确定具有重要的意义。【方法】遵循平行光线下的相似性原理,将果树按其树体缩小50倍,根据实测苹果树体形状制作不同龄级的苹果树3D模型,利用树体模型在研究区进行了果树遮阴范围的测定试验。将实测得到的树冠遮阴范围与依据太阳高度角和太阳方位角推算出的单株苹果树冠遮阴范围进行对比分析,对树冠遮阴范围表达式各参数进行优化。【结果】通过实测树冠遮阴范围与模型得出的树冠范围的对比分析,结果表明实测图与模型推算图相比,存在偏移和缩小。此现象主要是由于模型推算图仅考虑太阳方位角和太阳高度角对果树遮阴范围的影响,但是,当太阳光线接触果树冠层后会出现偏移未被考虑。因此,对现有的果树遮阴模型进行优化,经优化后的修正方位角和修正高度角推算得出的修正树冠遮阴范围,与实测遮阴范围的重合率均达到94%。【结论】改进后的树冠遮光数学模型能够较准确地模拟实际树冠的遮阴范围。
Abstract:
【Objective】Research on interspecies relationships in agroforestry systems based on light environments is scarce. The agroforestry system solar radiation under trees act as energy of intercropping plants photosynthesis, which directly affects the intercrop of ecological process and the level of productivity. This research regarding the shade range and shade intensity of fruit trees is key to decide the intercropping system configuration and reasonable distance. However, the study of shade range of fruit trees is currently only expressed empirically.【Method】Therefore, based on the similarity principle of parallel rays, a model of an apple tree was constructed by reducing the size of a real tree by 50 times. This model was used to study the tree shade range. The range obtained via actual measurements was compared with that obtained via theoretical calculation using the solar altitude and solar azimuth, in order to optimize calculation formula. The optimized calculation formula is used to accureteiy calculate the shade range of apple trees in an agroforestry system.【Result】The theoretical apple-tree crown shading change, calculated from the solar altitude and solar azimuth, was compared with the shading change measured using a 3D apple tree model, in which the tree appears shrunken. The phenomenon neglects the half-shadow effect of an apple-tree crown. Thus, the traditional shading model is inaccurate in its description of crown shading change. The traditional shading model was fixed via the shading coordinates of measurement and the theoretical measurements. After using the fixed model, the accuracy of shading region, comparing with actual measurement, was enhanced 94%.【Conclusion】The theoretical shade range provided by an apple-tree crown(for 4, 5 and 6 years old apple trees)was deduced according to incoming principle of solar ray. The measured and theoretical shades of an apple-tree crown were comparatively analyzed. Then, the theoretical parameter of apple-tree crown shade was optimized. It was found that the improved mathematical model proposed in this study can accurately simulate the actual crown canopy shade range.

参考文献/References:

[1] XU H S, BI H X, GAO L, et al. Distribution and morphological variation of fine root in a walnut-soybean intercropping system in the Loess Plateau of China[J]. International Journal of Agriculture & Biology, 2013, 15(5): 998-1002.
[2] YUN L, BI H X, GAO L, et al. Soil moisture and soil nutrient content in walnut-crop intercropping systems in the loess plateau of China[J]. Arid Land Research and Management, 2012,26(4):285-296.
[3] 蔡崇法, 王峰, 丁树文, 等. 间作及农林复合系统中植物组分间养分竞争机理分析[J]. 水土保持研究, 2000, 7(3):219-221,252.
CAI C F,WANG F,DING S W,et al.The plant components in intercropping and agroforestry systems between nutrient competition mechanism analysis [J]. Journal of Soil and Water Conservation Research, 2000, 7(3):219-221,252.
[4] 秦娟, 上官周平. 植物之间互作效应及其生理机制[J]. 干旱地区农业研究, 2005, 23(3):225-230.
QIN J, SHANGGUAN Z P. The interaction between plants and their physiological mechanisms [J]. Agricultural Research in Arid Regions, 2005, 23(3):225-230.
[5] 程鹏, 曹福亮, 汪贵斌. 农林复合经营的研究进展[J]. 南京林业大学学报(自然科学版), 2010, 34(3): 151-156. DOI:10.3969/j.issn.1000-2006.2010.03.031.
CHENG P, CAO F L, WANG G B. The process of study on agroforestry[J]. Journal of Nanjing Forestry University(Natural Sciences Edition),2010, 34(3): 151-156.
[6] 朱玲, 周玉新, 唐罗忠, 等. 我国林农复合经营模式及其综合评价方法[J]. 南京林业大学学报(自然科学版), 2015, 39(4): 149-156. DOI:10.3969/j.issn.1000-2006.2015.04.026.
ZHU L, ZHOU Y X, TANG L Z, et al. A review on the management models and comprehensive evaluation methods for agroforestry in China[J]. Journal of Nanjing Forestry University(Natural Sciences Edition),2015, 39(4): 149-156.
[7] 朱清科, 朱金兆. 黄土区退耕还林可持续经营技术[M]. 北京: 中国林业出版社, 2003.
[8] PEARCY R W, YANG W. A three-dimensional crown architecture model for assessment of light capture and carbon gain by understory plants[J]. Oecologia, 1996, 108(1):1-12.
[9] ZAMORA D S, JOSE S, NAIR P K R, et al. Interspecific competition in a pecan-cotton alley-cropping system in the Southern United States: is light the limiting factor?[J]. Advances in Agroforestry, 2008: 81-95.
[10] SILES P, HARMAND J M, VAAST P. Effects of Inga densiflora on the microclimate of coffee(Coffea arabica L.)and overall biomass under optimal growing conditions in Costa Rica[J]. Agroforestry Systems, 2010, 78(3): 269-286.
[11] 蔡智才, 毕华兴, 许华森, 等. 晋西黄土区苹果花生间作系统光合有效辐射及其对花生生长的影响[J]. 西北农林科技大学学报(自然科学版), 2017, 45(4): 51-58.
CAI Z C, BI H X, XU H S, et al. Photosynthetic effective radiation of apple peanut intercropping system and its effect on peanut growth in the Huangtu area [J]. Journal of Northwest Agricultural Science and Technology University(Natural Science Edition), 2017, 45(4): 51-58.
[12] HANMING H, LEI Y, LIHUA Z, et al. The temporal-spatial distribution of light intensity in maize and soybean intercropping system[J]. Journal of Resources and Ecology, 2012, 3(2): 169-173.
[13] 廖文超. 晋西黄土区不同树龄苹果与大豆间作系统水、肥、光空间分布特征[D]. 北京:北京林业大学, 2015.
LIAO W C.The characteristics of water, fertilizer and light spatial distribution of different tree age apples and soybean intercropping systems in the Huangtu District of Jinxi area [D]. Beijing: Beijing Forestry University, 2015.
[14] 史晓丽,郭小平,毕华兴,等. 晋西果农间作光竞争及产量研究[J]. 北京林业大学学报, 2009, 31(S2): 115-118.
SHI X L, GUO X P, BI H X, et al. The study of light competition and yield in the Jin-west fruit agriculture [J]. Journal of Beijing Forestry University, 2009, 31(S2): 115-118.
[15] 田阳, 云雷, 毕华兴, 等. 晋西黄土区果农间作光竞争研究[J]. 水土保持研究, 2013, 20(4): 288-292.
TIAN Y, YUN L, BI H X, et al. Study on the study of light competition in fruit and agriculture in huangtu area of Shanxi Province [J]. Soil and Water Conservation Research, 2013, 20(4): 288-292.
[16] 张雯, 谢辉, 张平, 等. 扁桃-冬小麦间作模式下树冠结构对间作区域光环境的影响[J]. 中国生态农业学报, 2016, 24(6): 753-761.
ZHANG W, XIE H, ZHANG P, et al. The influence of canopy structure on light environment in intercropping region in the meso-winter wheat intercropping pattern [J]. Journal of China Ecological Agriculture, 2016, 24(6): 753-761.
[17] BELLOW J. Comparing common methods for assessing understory light availability in shaded-perennial agroforestry systems[J]. Agricultural and Forest Meteorology, 2003, 114(3): 197-211.
[18] 关德新, 朱廷耀, 孔繁智. 单株树附近日照和直接辐射分布的理论分析[M]. 北京: 气象出版社, 1992.
[19] 叶菲莫娃. 植被产量的辐射因子[M].王炳忠,译.北京:气象出版社, 1977.
[20] 张小全, 徐德应, 赵茂盛. 林冠结构、辐射传输与冠层光合作用研究综述[J]. 林业科学研究, 1999, 12(4):411-421.
ZHANG X Q, XU D Y, ZHAO M S. A review of the study on photosynthesis of canopy structures and canopy structures [J]. Forestry Science Research, 1999, 12(4): 411-421.
[21] 张小全, 徐德应. 人工同龄林冠层辐射场模拟模型I理论计算[J]. 植物生态学报, 2001, 25(5):609-615.
ZHANG X Q,XU D Y. The theoretical calculation of simulated model I of canopy radiation field in the same age [J]. Journal of Plant Ecology, 2001, 25(5): 609-615.
[22] ANNANDALE J G, JOVANOVIC N Z, CAMPBELL G S, et al. Two-dimensional solar radiation interception model for hedgerow fruit trees[J]. Agricultural and Forest Meteorology, 2004, 121(3): 207-225.
[23] GROOT A. A model to estimate light interception by tree crowns,applied to black spruce[J]. Canadian Journal of Forest Research, 2004, 34(4): 788-799.
[24] PEARCY R W, YANG W A. Three-dimensional crown architecture model for assessment of light capture and carbon gain by understory plants [J]. Oecologia,1996, 108(1): 1-12.
[25] ZHAO W,QUALLS R J,BERLINER P R. Modeling of the short wave radiation distribution in an agroforestry system[J]. Agricultural and Forest Meteorology, 2003, 118(3): 185-206.
[26] 许华森. 晋西黄土区苹果-大豆间作系统太阳辐射时空分布规律[D]. 北京:北京林业大学, 2015.
XU H S. The distribution of solar radiation spatiotemporal distribution of apple-soybean intercropping system[D]. Beijing: Beijing Forestry University, 2015.
[27] 鲍彪. 晋西黄土区苹果-大豆间作系统遮阴模拟对大豆生长的影响[D]. 北京:北京林业大学, 2013.
[28] 王一. 不同生育时期遮阴对大豆形态性状、产量及光合特性的影响[D]. 成都:四川农业大学, 2013.
WANG Y. Effects of shading on the morphological characters, yield and photosynthetic characteristics of soybean in different breeding periods[D]. Chendu: Sichuan Agricultural University, 2013.
[29] 许华森, 毕华兴, 高路博, 等. 晋西黄土区苹果+大豆间作系统小气候及其对作物生产力的影响[J]. 中国水土保持科学, 2014, 12(2):9-15.
XU H S, BI H X, GAO L B, et al. the microclimate of apple+soybean intercropping system and its effect on crop productivity [J]. China Soil and Water Conservation Science, 2014, 12(2): 9-15.
[30] 纪和. 马尾松冠层光合有效辐射三维空间分布模型的构建与验证[D]. 武汉: 华中农业大学, 2011.
JI H. Construction and verification of three-dimensional spatial distribution model of photosynthetic effective radiation of masson pine canopy[D]. Wuhan: Huazhong Agricultural University, 2011.
[31] 吴力立, 王宗淳. 树冠遮阴动态研究[J].南京林业大学学报, 1991, 15(2): 61-66.
WU L L, WANG Z C. Research on canopy shading dynamics [J]. Journal of Nanjing Forestry University, 1991, 15(2):61-66.
[32] 张蕾, 于海业, 杨昊谕, 等. 坡面单木圆锥形树冠投影边界的模型理论[J]. 生态学报, 2006, 26(10): 3317-3323.
ZHANG L, YU H Y, YANG H Y, et al. the model theory of the boundary of the conical tree canopy in the slope of a single log [J]. Ecological Journal, 2006, 26(10): 3317-3323.
[33] 李树人, 赵勇. 树冠遮光数学模型的研究[J]. 河南农业大学学报, 1994, 28(3): 361-366.
LI S R, ZHAO Y. research on the mathematical model of canopy shading [J]. Journal of Henan Agricultural University, 1994, 28(3): 361-366.
[34] ABRAHA M G, SAVAGE M J. Validation of a three-dimensional solar radiation interception model for tree crops[J]. Agriculture, Ecosystem & Environment, 2010, 139(4): 636-652.
[35] KUHN N. Forest dynamics:SILVI-STAR: a comprehensive monitoring system[J].Forest Ecology and Management, 1991, 40(3): 317-319.

备注/Memo

备注/Memo:
收稿日期:2017-11-22 修回日期:2018-04-15 基金项目:国家自然科学基金项目(31470638); 科技创新服务能力建设-科研基地建设项目(PXM2018-014207-000024) 第一作者:王晶晶(524483758@qq.com)。*通信作者:毕华兴(bhx@bjfu.edu.cn),教授,博士。
更新日期/Last Update: 2018-09-15