[1]沈 杰,杨忠月,乔吉良.基于季节性时间序列模型的林业产值预测分析[J].南京林业大学学报(自然科学版),2018,42(05):185-190.[doi:10.3969/j.issn.1000-2006.201804011]
 SHEN Jie,YANG Zhongyue,QIAO Jiliang.Prediction and analysis of China's forestry output value based on seasonal time series model[J].Journal of Nanjing Forestry University(Natural Science Edition),2018,42(05):185-190.[doi:10.3969/j.issn.1000-2006.201804011]
点击复制

基于季节性时间序列模型的林业产值预测分析
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
42
期数:
2018年05期
页码:
185-190
栏目:
研究简报
出版日期:
2018-09-15

文章信息/Info

Title:
Prediction and analysis of China's forestry output value based on seasonal time series model
文章编号:
1000-2006(2018)05-0185-06
作者:
沈 杰杨忠月乔吉良
南京林业大学经济管理学院,江苏 南京 210037
Author(s):
SHEN Jie YANG Zhongyue QIAO Jiliang
College of Economy and Management, Nanjing Forestry University, Nanjing 210037, China
关键词:
林业产值 时间序列 CH检验 GM(11)模型
Keywords:
forestry output value time series CH test GM(11)model
分类号:
S7-9; F326
DOI:
10.3969/j.issn.1000-2006.201804011
文献标志码:
A
摘要:
【目的】针对林业产值预测,提出一种基于季节性时间序列的方法,为林业部门制定合理规划提供重要依据。【方法】对林业产值序列采用CH检验方法检验其平稳性,考虑序列的周期性和趋势性特点,建立基于季节性时间序列的林业产值预测模型,并与传统的GM(1,1)模型进行对比分析。【结果】与传统的GM(1,1)模型相比,季节性时间序列模型不仅可以预测以年度数据为单位的经济序列,而且可以预测以季度数据和月度数据为单位甚至是每日数据为单位的经济序列,且具有更高的预测精度。【结论】季节性时间序列模型可有效地预测林业产值的周期性和趋势性,且可大幅度提高预测精度,可用于林业部门对林业产值的预测和规划。
Abstract:
【Objective】Consider that periodic performance can improve the fitted effect of the model of forestry output value and predict the output value of forestry in the future, which can provide a reference for subsequent forestry departments to implement rational planning. 【Method】 Selecting data for the period 2004—2016, total output value of forestry, in view of the periodicity and trend of forestry output value and combining the traditional ARIMA model, we have designed a time series model of seasonal forestry output value. The model uses the CH test method to make up for the shortage of the traditional GM(1,1)model on the seasonal data test. 【Result】It is found that the seasonal time series model can not only predict the economic sequence based on annual data, but also can predict the economic sequence of the quarterly data and monthly data units or even daily data with higher prediction accuracy compared with the traditional GM(1,1)model.【Conclusion】It can be used by the forestry department to plan forestry output value because a seasonal time series model can effectively predict the periodicity and trend of forestry output value, and greatly improve the predictive accuracy.

参考文献/References:

[1] 于江龙, 刘俊昌, 陈文汇. 我国林业投资与产业经济增长关系研究[J]. 价格理论与实践, 2011(9): 85-86.
YU J L, LIU J C, CHEN W H. Research on the relationship between forestry investment and industrial economic growth in China [J]. Price Theory and Practice, 2011(9): 85-86.
[2] 赵健. 福建省林业生产总值预测及目标值建议[J]. 福建广播电视大学学报, 2016(2): 41-47.
ZHAO J. Prediction and target value of forestry production in Fujian Province [J]. Journal of The Open University of Fujian, 2016(2): 41-47.
[3] 黄健儿, 林杰, 陈平留. 应用灰色系统理论建立林业产值预测模型[J]. 林业经济问题, 1987(1): 39-44. DOI:10.16832/j.cnki.1005-9709.1987.01.009.
HUANG J E, LIN J, CHEN P L. Applying grey system theory to establish forestry output prediction model [J]. Forestry Economic Problems, 1987(1): 39-44.
[4] 刘璨, 马天乐, 孙述涛. 中国林业产值动态预测[J]. 山东农业大学学报(自然科学版), 1993(3): 316-322.
LIU C, MA T L, SUN S T. Dynamic prediction of China's forestry output value [J]. Journal of Shandong Agricultural University(Natural Science Edition), 1993(3): 316-322.
[5] 杨细明. 林业产值结构的关联分析与产值预测[J]. 福建林业科技, 2001,28: 11-15. DOI:10.13428/j.cnki.fjlk.2001.01.004
YANG X M. Correlation analysis and output forecast of forestry output structure [J]. Fujian Forestry Science and Technology, 2001,28: 11-15.
[6] FENG H. On model of time series analysis and forecast of foreign exchange reserves of China on the basis of ARIMA[J]. Journal of Mianyang Normal University, 2011,8:23-25.
[7] MAMOJ K, MADHU A. An application of time series arima forecasting model for predicting sugarcane production in India[J]. Studies in Business & Economics, 2014, 9(7): 1501-1508.
[8] WANG C. A comparison study between fuzzy time series model and ARIMA model for forecasting Taiwan export[J]. Expert Systems with Applications, 2011, 38(8): 9296-9304. DOI:10.1016/j.eswa.2011.01.015
[9] 胡冰川, 徐枫, 董晓霞. 国际农产品价格波动因素分析——基于时间序列的经济计量模型[J]. 中国农村经济, 2009, 7: 86-95.
HU B C, XU F, DONG X X. Analysis of the price fluctuation factors of international agricultural products—the econometric model based on time series [J]. China Rural Economy, 2009, 7: 86-95.
[10] 郭志仪, 赵小克, 刘那日苏. 区域金融发展和经济增长关系的实证分析——基于甘肃省1978年—2010年的时间序列数据[J]. 经济经纬, 2013(1): 11-15.
GUO Z Y, ZHAO X K, LIU N R S. An empirical analysis of the relationship between regional financial development and economic growth: based on the time series data of the 1978-2010 in Gansu province [J]. Economic Longitude, 2013(1): 11-15.
[11] 黄红梅. 应用时间序列分析[M]. 北京:清华大学出版社,2016.
[12] 易丹辉. 时间序列分析:方法与应用[M]. 北京:中国人民大学出版社,2011.
[13] 王远林,王辉,潘家柱. 金融时间序列分析[M]. 3版. 北京:人民邮电出版社, 2012.
[14] 王维国,王霞,颜敏. 时间序列多个突变点的贝叶斯推断——对我国GDP序列的实证分析[J]. 数学的实践与认识, 2010, 40(9):45-53.
WANG W G, WANG X, YAN M. Bayesian inference of multiple points in time series: demonstration based on Chinese GDP series[J]. Mathematics in Practice and Theory, 2010, 40(9): 45-53.
[15] 何新易. 基于时间序列模型的中国GDP增长预测分析[J].财经理论与实践,2012(4): 96-99.
HE X Y. Prediction and analysis of China's GDP growth based on time series model[J]. Financial Theory and Practice, 2012(4): 96-99.
[16] 张文彤,董伟. SPSS统计分析高级教程[M]. 2版. 北京:高等教育出版社,2013.
[17] DICKEY D A, FULLER W A. Likelihood ratio statistics for autoregressive time series with a unit root[J]. Econometrica, 1981, 49(4):1057-1072. DOI: 10.2307/1912517.
[18] KWIATKOWSKI D, PHILLIPS P, SCHMIDT P, et al. Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? [J]. Journal of Econometrics, 1992, 54: 159-178. DOI:10.1016/0304-4076(92)90104-Y.
[19] CANOVA F, HANSEN B E. Are seasonal patterns constant over time? a test for seasonal stability[J]. Journal of Business and Economic Statistics, 1995, 13(3): 237-252. DOI:10.2307/1392184.
[20] LJUNG G M, BOX G E P. On a measure of lack of fit in time series models[J]. Biometrika, 1978, 65: 297-303.

备注/Memo

备注/Memo:
收稿日期:2018-04-07 修回日期:2018-06-24 第一作者:沈杰(sjnjfu@163.com),教授。
更新日期/Last Update: 2018-09-15