[1]孟苗婧,张金池*,郭晓平,等.海拔变化对黄山松阔叶混交林土壤有机碳组分的影响[J].南京林业大学学报(自然科学版),2018,42(06):106-112.[doi:10.3969/ j.issn.1000-2006.201712031]
 MENG Miaojing,ZHANG Jinchi*,GUO Xiaoping,et al.Effects of altitude change on soil organic carbon fractions in Pinus taiwanensis and broad-leaved mixed forest[J].Journal of Nanjing Forestry University(Natural Science Edition),2018,42(06):106-112.[doi:10.3969/ j.issn.1000-2006.201712031]
点击复制

海拔变化对黄山松阔叶混交林土壤有机碳组分的影响
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
42
期数:
2018年06期
页码:
106-112
栏目:
研究论文
出版日期:
2018-12-15

文章信息/Info

Title:
Effects of altitude change on soil organic carbon fractions in Pinus taiwanensis and broad-leaved mixed forest
作者:
孟苗婧1张金池1*郭晓平1吴家森1赵有朋1叶立新2刘胜龙12
(1.南京林业大学,南方现代林业协同创新中心,江苏省水土保持与生态修复重点实验室,南京林业大学林学院,江苏 南京 210037; 2.浙江凤阳山-百山祖国家级自然保护区凤阳山管理处,浙江 龙泉 323700)
Author(s):
MENG Miaojing1 ZHANG Jinchi1* GUO Xiaoping1 WU Jiasen1 ZHAO Youpeng1 YE Lixin2 LIU Shenglong12
(1.Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Co-Innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; 2.The Fengyang Mountain Management Office of Fengyang Mountain-Baishanzu National Nature Reserve in Zhejiang Province, Longquan 323700, China)
关键词:
土壤有机碳 化学组分 海拔 核磁共振波谱技术 黄山松阔叶混交林
Keywords:
soil organic carbon chemical composition altitude nuclear magnetic resonance spectroscopy(NMR) Pinus taiwanensis and broad-leaved mixed forest
分类号:
S719
DOI:
10.3969/ j.issn.1000-2006.201712031
文献标志码:
A
摘要:
【目的】明确海拔变化对黄山松阔叶混交林土壤有机碳化学组分含量的影响及初步影响机理,了解全球气候变暖后,典型林分土壤有机碳稳定性的变化。【方法】以黄山松在凤阳山的主要分布海拔范围1 000~1 800 m为准,选取1 200、1 500、1 800 m 3个海拔梯度,在每个海拔梯度的阳坡选取3个标准样地(20 m×20 m),用蛇形法于每块样地取样,带回测定其土壤理化性质及有机碳化学组分含量。【结果】随着海拔升高,土壤养分含量呈先升高后降低的变化趋势,土壤水溶性碳及有效磷含量在各海拔间差异性显著(P<0.05); 随海拔升高,烷基碳、N-烷氧碳含量先增大后减小; 芳香碳、酚基碳及羰基碳含量则先减小后增大; 烷氧碳和缩醛碳含量则随海拔升高而降低; 海拔1 200 m处羰基碳含量与其他两个海拔存在显著差异(P<0.05)。非度量多维标度(NMDS)排序显示不同海拔梯度土壤有机碳组分含量之间有显著差异,这些差异主要是由于羰基碳、烷基碳含量及Z烷基碳/Z烷氧碳的变化引起的。冗余分析(RDA)显示,土壤总磷含量及土壤容重对有机碳分子结构复杂程度影响较强; 土壤总氮含量与有机碳稳定性则呈极显著正相关关系。【结论】海拔变化所引起的土壤理化性质的改变,是影响土壤有机碳稳定性的重要因素; 高海拔处温度过低会对土壤有机碳的分解产生影响,从而影响土壤有机碳稳定性。
Abstract:
【Objective】 This study was performed to understand the effects of altitude on soil organic carbon chemical composition in a Pinus taiwanensis broad-leaved mixed forest and its preliminary influencing mechanism and changes in soil organic carbon stability in typical stands after global warming. 【Method】On the basis of the distribution range of Pinus taiwanensis on Fengyang Mountain, 1 200, 1 500, and 1 800 m were selected as the three altitudinal gradients, and three standard plots(20 m × 20 m)were set at each elevation gradient and sampled in August 2016. Solid-state nuclear magnetic resonance spectros copy was used to determine the chemical composition of soil organic carbon. 【Result】With an increase in elevation, the soil nutrient content increased and then decreased, and soil soluble carbon and phosphorus content at each elevation between significant difference(P < 0.05). With an increase in altitude, the N-alkyl carbon and alkyl carbon content initially increased and then decreased, and the aromatic carbon, phenolic carbon and carbonyl carbon content initially decreased and then increased. O-alkyl carbon and a cetal carbon content decreased with the increase in altitude at 1 200 m above sea level; at 1 200 m, the carbonyl carbon content was significantly different from those at the other two elevations(P<0.05). Non-metric multidimensional scaling ordination showed significant differences in soil organic carbon fractions at different elevations, mainly because of changes in carbonyl carbon, alkyl carbon, and Zalkyl carbon/ZO-alkyl carbon. Redundancy analysis showed that the soil total phosphorus content and soil bulk density have a great influence on the molecular structure complexity of organic carbon, soil total nitrogen content and organic carbon stability are significantly positively related. 【Conclusion】The physicochemical properties of altitude changes caused by the change of soil are important factors that affect the stability of soil organic carbon. Soil organic carbon has the lowest stability at 1 800 m, and low temperature can affect the decomposition of soil organic carbon, thus affecting the stability of soil organic carbon.

参考文献/References:

[1] SCHMIDT M W, TORN M S, ABIVEN S, et al. Persistence of soil organic matter as an ecosystem property[J]. Nature, 2011, 478(7367): 49-56. DOI: 10.1038/nature10386.
[2] FONTAINE S, BAROT S, BARRé P, et al. Stability of organic carbon in deep soil layers controlled by fresh carbon supply[J]. Nature, 2007, 450(7167): 277-280. DOI: 10.1038/nature06275.
[3] ALBALADEJO J, ORTIZ R, GARCIA-FRANCO N, et al. Land use and climate change impacts on soil organic carbon stocks in semi-arid Spain [J]. Journal of Soils and Sediments, 2012, 13(2): 265-277. DOI:10.1007/s11368-012-0617-7.
[4] 李婷, 赵世伟, 张扬, 等. 黄土区次生植被恢复对土壤有机碳官能团的影响[J]. 生态学报, 2011,31(18):5199-5206.
LI T, ZHAO S W, ZHANG Y, et al. Effect of revegetation on functional groups of soil organic carbon on the Loess Plateau[J]. Acta Ecologica Sinica, 2011, 31(18):5199-5206.
[5] WANG H, LIU S R, WANG J X, et al. Differential effects of conifer and broadleaf litter inputs on soil organic carbon chemical composition through altered soil microbial community composition[J]. Scientific Reports,2016, 6:27097. DOI:10.1038/srep27097.
[6] LI Z, ZHAO B, WANG Q, et al. Differences in chemical composition of soil organic carbon resulting from long-term fertilization strategies[J]. PloS One, 2015, 10(4):e124359. DOI: 10.1371/journal. pone. 0124359.
[7] 朱凌宇, 潘剑君, 张威. 祁连山不同海拔土壤有机碳库及分解特征研究[J]. 环境科学, 2013,34(2):668-675.
ZHU L Y, PAN J J, ZHANG W. Study on soil organic carbon pools and turnover characteristics along an elevation gradient in Qilian Mountain.[J]. Environmental Science, 2013, 34(2):668-675.
[8] CHEN C R, XU Z H, MATHERS N J. Soil carbon pools in adjacent natural and plantation forests of subtropical australia[J]. Soil Science Society of America Journal, 2004,68(1):282. DOI:10.2136/sssaj2004.2820.
[9] LI Y, ZHANG J, CHANG S X, et al. Converting native shrub forests to Chinese chestnut plantations and subsequent intensive management affected soil C and N pools[J]. Forest Ecology and Management, 2014, 312:161-169. DOI: 10.1016/j.foreco.2013.10.008.
[10] 毛霞丽, 陆扣萍, 孙涛, 等. 长期施肥下浙江稻田不同颗粒组分有机碳的稳定特征[J]. 环境科学, 2015,36(5):1827-1835. DOI: 10.13227/j.hjkx.2015.05.043.
MAO X L, LU K P, SUN T, et al. Effect of long-term fertilizer application on the stability of organic carbon in particle size fractions of a paddy soil in Zhejiang Province, China [J]. Environmental Science, 2015, 36(5):1827-1835.
[11] 康健, 孟宪法, 许妍妍, 等. 不同植被类型对滨海盐碱土壤有机碳库的影响[J]. 土壤, 2012,44(2):260-266. DOI: 10.3969/j.issn.0253-9829.2012.02.014.
KANG J, MENG X F, XU Y Y, et al. Effects of different vegetation types on soil organic carbon pool in costal saline-alkali soils of Jiangsu Province[J]. Soils, 2012, 44(2):260-266.
[12] TAN Q, WANG G. Decoupling of nutrient element cycles in soil and plants across an altitude gradient[J]. Scientific Reports, 2016, 6:34875. DOI: 10.1038/srep34875.
[13] ZHANG L, WANG A, YANG W, et al. Soil microbial abundance and community structure vary with altitude and season in the coniferous forests, China [J]. Journal of Soils and Sediments, 2016, 17(9): 2318-2328. DOI: 10.1007/s11368-016-1593-0.
[14] JI H, ZHUANG S, ZHU Z, et al. Soil organic carbon pool and its chemical composition in Phyllostachy pubescens forests at two altitudes in Jian’ou City, China[J]. Plos One, 2015,10(12):e0146029. DOI: 10.1371/journal.pone.0146029.
[15] 李淑娴, 谭艳, 陈颖, 等. 黄山松不同生理生化指标随海拔高度变化趋势[J]. 东北林业大学学报, 2010,38(6):9-12. DOI:10.3969/j.issn.1000-5382.2010.06.003
LI S X, TAN Y, CHEN Y, et al. Variation trends of physiological and biochemical indexes of Pinus taiwanensis with increasing elevation[J]. Journal of Northeast Forestry University, 2010, 38(6):9-12.
[16] GUO X, MENG M, ZHANG J, et al. Vegetation change impacts on soil organic carbon chemical composition in subtropical forests[J]. Scientific Reports, 2016, 6(1). DOI:10.1038/srep29607.
[17] FAITHFULL N. Methods in agricultural chemical analysis [M]. London: Centre for Agiculture and Bio Sciences Inter, 2003.
[18] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 2000:1-638.
LU R K. Methods for agricultural chemical analysis of soil[M]. Beijing: Agricultural Science and Technology Press of China, 2000.
[19] SCHMIDT M W I, KNICKER H, HATCHER P G, et al. Improvement of 13C and 15N CPMAS NMR spectra of bulk soils, particle size fractions and organic material by treatment with 10% hydrofluoric acid [J]. European Journal of Soil Science, 1997, 48(2): 319-328. DOI:10.1111/j.1365-2389.1997.tb00552.x
[20] MATHERS N J, XU Z, BERNERSPRICE S J, et al. Hydrofluoric acid pre-treatment for improving 13C CPMAS NMR spectral quality of forest soils in south-east Queensland, Australia[J]. Australian Journal of Soil Research, 2002, 40(4):665-674.
[21] GUO X, MENG M, ZHANG J, et al. Vegetation change impacts on soil organic carbon chemical composition in subtropical forests[J]. Scientific Reports, 2016, 6(1):29607. DOI: 10.1038/srep29607.
[22] OJSANEN J, BLANCHET G, KINDT R, et al. Vegan: community ecology package. V. 0.5. 2 [CP/OL].(2013)[2016]https://github.com/veganders/vegan.
[23] DIELEMAN W I J, VENTER M, RAMACHANDRA A, et al. Soil carbon stocks vary predictably with altitude in tropical forests: implications for soil carbon storage[J]. Geoderma, 2013, 204(4):59-67. DOI:10.1016/j.geoderma.2013.04.005.
[24] MANOJLOCIC M, CABILOVAKI R, SITAULA B. Soil organic carbon in Serbian Mountain soils: Effects of land use and altitude [J]. Polish Journal of Environmental Studies, 2011, 20(4):977-986.
[25] DU B, KANG H, PUMPANEN, et al. Soil organic carbon stock and chemical composition along an altitude gradient in the Lushan Mountain, subtropical China[J]. Ecological Research, 2014, 29(3):433-439. DOI: 10.1007/s11284-014-1135-4.
[26] 郜士垒, 何宗明, 黄志群, 等. 杉木宿存叶片的分解及稳定性碳氮同位素和化学组成[J]. 生态学杂志, 2015,34(9):2457-2463.
GAO S L, HE Z M, HUANG Z Q, et al. Decomposition, carbon and nitrogen stable isotopes and chemical composition of dead leaves clinging in a Chinese fir(Cunninghamia lanceolata)plantation [J]. Chinese Journal of Ecology, 2015, 34(9):2457-2463.
[27] ZECH W, HAUMAIER L, HEMPFLING R, et al. Ecological aspects of soil organic matter in tropical land use[C]// NACCARTHY P, CLAPP C E, MALCOLM R A, et al. Humic substances in soil and crop sciences: selected Readings. Proceedings of Symposium of the International Humic Substances Society, Chicago, Illinois: D, 1990:187-202. DOI: 10.2136/1990.humicsubstances.c8.
[28] BOENI M, BAYER C, DIECKOW J, et al. Organic matter composition in density fractions of Cerrado Ferralsols as revealed by CPMAS 13C NMR: influence of pastureland, cropland and integrated crop-livestock[J]. Agriculture Ecosystems & Environment, 2014, 190:80-86. DOI:10.1016/j.agee.2013.09.024.
[29] PéREZ-CRUZADO C, SANDE B, OMIL B, et al. Organic matter properties in soils afforested with Pinus radiata[J]. Plant and Soil, 2014, 374(1):381-398. DOI: 10.1007/s11104-013-1896-5.
[30] DOU S, ZHANG J J, LI K. Effect of organic matter applications on 13C-NMR spectra of humic acids of soil [J]. European Journal of Soil Science, 2008, 59(3):532-539. DOI:10.1111/j.1365-2389.2007.01012.x.
[31] 张勇, 胡海波, 黄玉洁, 等. 不同植被恢复模式对土壤有机碳分子结构及其稳定性的影响[J]. 环境科学研究, 2015,28(12):1870-1878.
ZHANG Y, HU H B, HUANG Y J, et al. Effects of different vegetation restoration models on molecular structure and stability of soil organic carbon [J]. Research of Environmental Sciences, 2015, 28(12):1870-1878.
[32] 商素云, 姜培坤, 宋照亮, 等. 亚热带不同林分土壤表层有机碳组成及其稳定性[J]. 生态学报, 2013,33(2):416-424. DOI: 10.5846/stxb201111301831.
SHANG S Y, JIANG P K, SONG Z L, et al. Composition and stability of organic carbon in the top soil under different forest types in subtropical China [J]. Acta Ecologica Sinica, 2013, 33(2):416-424.
[33] WANG H, LIU S R, MO J M, et al. Soil organic carbon stock and chemical composition in four plantations of indigenous tree species in subtropical China [J]. Ecological Research, 2010,25(6):1071-1079. DOI: 10.1007/s11284-010-0730-2
[34] POMILIO A B, LEICACH S R, GRASS M Y, et al. Constituents of the root exudate of Avena fatua grown under far-infrared-enriched light[J]. Phytochemical Analysis, 2015, 11(5):304-308. DOI: 10.1002/1099-1565(200009/10)11.
[35] HUANG Z, XU Z, CHEN C, et al. Changes in soil carbon during the establishment of a hardwood plantation in subtropical Australia [J]. Forest Ecology and Management, 2008, 254(1):46-55. DOI:10.1016/j.foreco. 2007.07.021.
[36] WILDING L P, SMECK N E, HALL G F. Pedogenesis and soil taxonomy: the soil orders[M]. Amsterdam, Netherland: 1983.
[37] FU C, WEN G. Several issues on aridification in the Northern China[J]. Climatic & Environmental Research, 2002, 7(1):22-29. DOI: 10.3969/j.issn.1006-9585.2002.01.003.
[38] MI N S, LIU J, YU G, et al. Soil inorganic carbon storage pattern in China[J]. Global Change Biology, 2010, 14(10):2380-2387. DOI:10.1016/j.carbon.2006.05.034.
[39] LI Z P, HAN F X, SU Y, et al. Assessment of soil organic and carbonate carbon storage in China[J]. Geoderma, 2007, 138(1): 119-126. DOI:10.1016/j.geoderma.2006.11.007.
[40] 祖元刚, 李冉, 王文杰, 等. 我国东北土壤有机碳、无机碳含量与土壤理化性质的相关性[J]. 生态学报, 2011,31(18):5207-5216.
ZU Y G, LI R, WANG W J, et al. Soil organic and inorganic carbon contents in relation to soil physicochemical properties in northeastern China[J]. Acta Ecologica Sinica, 2011, 31(18): 5207-5216.
[41] 肖胜生. 温带半干旱草地生态系统碳固定及土壤有机碳库对外源氮输入的响应[D]. 北京:中国科学院,2010.
XIAO S S. Carbon sequestration in temperate semi-arid grassland ecosystem and response of soil organic carbon pool to exogenous nitrogen input [D]. Beijing: Chinese Academy of Sciences, 2010.
[42] 张秀兰, 王方超, 方向民, 等. 亚热带杉木林土壤有机碳及其活性组分对氮磷添加的响应[J]. 应用生态学报, 2017,28(2):449-455. DOI:10.13287/j.1001-9332.201702.024.
ZHANG X L, WANG F C, FANG X M, et al. Responses of soil organic carbon and its labile fractions to nitrogen and phosphorus additions in Cunninghamia lanceolata plantations in subtropical China.[J]. The Journal of Applied Ecology, 2017, 28(2): 449-455.

相似文献/References:

[1]王莹,冯育青,阮宏华*.太湖东岸湖滨带土壤微生物生物量碳及主要化学特性[J].南京林业大学学报(自然科学版),2010,34(04):013.[doi:10.3969/j.jssn.1000-2006.2010.04.003]
 WANG Ying,FENG Yu qing,RUAN Hong hua*.Soil microbial biomass carbon and other major chemical properties in the east of Taihu riparian zones[J].Journal of Nanjing Forestry University(Natural Science Edition),2010,34(06):013.[doi:10.3969/j.jssn.1000-2006.2010.04.003]
[2]王邵军,曹子林,李小英,等.滇池湖滨带不同植被类型土壤碳、氮时空分布特征[J].南京林业大学学报(自然科学版),2013,37(05):055.[doi:10.3969/j.issn.1000-2006.2013.05.011]
 WANG Shaojun,CAO Zilin,LI Xiaoying,et al.Spatiotemporal distributions of soil carbon and nitrogen under the four riparian zones in the Dianchi Lake[J].Journal of Nanjing Forestry University(Natural Science Edition),2013,37(06):055.[doi:10.3969/j.issn.1000-2006.2013.05.011]
[3]陶吉兴,傅伟军,姜培坤,等.基于Moran’s I和地统计学的浙江森林土壤有机碳空间分布研究[J].南京林业大学学报(自然科学版),2014,38(05):097.[doi:10.3969/j.issn.1000-2006.2014.05.019]
 TAO Jixing,FU Weijun,JIANG Peikun,et al.Using Moran’s I and geostatistics to analyze the spatial distribution of organic carbon in forest soil of Zhejiang province[J].Journal of Nanjing Forestry University(Natural Science Edition),2014,38(06):097.[doi:10.3969/j.issn.1000-2006.2014.05.019]
[4]权 伟,郑方东,戎建涛.浙江乌岩岭7种林分土壤碳密度及碳氮比分布特征[J].南京林业大学学报(自然科学版),2019,43(01):175.
 QUAN Wei,ZHENG Fangdong,RONG Jiantao.Soil carbon density and C/N distribution of seven forest types in Wuyanling Nature Reserve, Zhejiang Province[J].Journal of Nanjing Forestry University(Natural Science Edition),2019,43(06):175.

备注/Memo

备注/Memo:
收稿日期:2017-12-18 修回日期:2018-09-12
基金项目:国家林业公益性行业科研专项项目(201504406); 江苏高校优势学科建设工程资助项目(PAPD); 江苏省高校自然科学研究重大项目(15KJA220004); 江苏省研究生创新培养工程(KYZZ16-0323)
第一作者:孟苗婧(275536122@qq.com),博士生。*通信作者:张金池(zhang8811@njfu.edu.cn),教授。
更新日期/Last Update: 2018-11-30