[1]张 宇,陈 肃,高 源,等.BpMYB4基因在白桦中的遗传转化及低温胁迫应答反应[J].南京林业大学学报(自然科学版),2019,43(01):025-31.[doi:10.3969/j.issn.1000-2006.201808050]
 ZHANG Yu,CHEN Su,GAO Yuan,et al.Functional study of BpMYB4 in birch response to low temperature stress[J].Journal of Nanjing Forestry University(Natural Science Edition),2019,43(01):025-31.[doi:10.3969/j.issn.1000-2006.201808050]
点击复制

BpMYB4基因在白桦中的遗传转化及低温胁迫应答反应
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
43
期数:
2019年01期
页码:
025-31
栏目:
研究论文
出版日期:
2019-01-28

文章信息/Info

Title:
Functional study of BpMYB4 in birch response to low temperature stress
文章编号:
1000-2006(2019)01-0025-07
作者:
张 宇陈 肃高 源黄海娇*
东北林业大学,林木遗传育种国家重点实验室,黑龙江 哈尔滨 150040
Author(s):
ZHANG Yu CHEN Su GAO Yuan HUANG Haijiao*
State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
关键词:
白桦 BpMYB4 遗传转化 低温胁迫 抗寒
Keywords:
Betula platyphylla Suk. BpMYB4 genetic transformation cold stress cold resistance
分类号:
S722
DOI:
10.3969/j.issn.1000-2006.201808050
文献标志码:
A
摘要:
【目的】为了研究BpMYB4基因在冷胁迫反应中的功能,对其进行了白桦转化试验。【方法】采用定量PCR技术对BpMYB4基因在白桦的根、茎、叶、木质部、芽、茎段等18个组织部位的表达模式进行分析,然后克隆构建PGWB2-BpMYB4植物过表达载体,通过农杆菌介导法进行白桦合子胚的遗传转化,采用PCR和荧光定量PCR技术检测转基因白桦株系中BpMYB4基因的相对表达量,最后采用分光光度计法对BpMYB4转基因白桦进行了8项生理指标的测定。【结果】相对于芽的表达量,BpMYB4基因在第3片叶的叶脉和第1片叶与第2片叶之间嫩茎的表达量最高; 白桦的遗传转化总共获得了13个过表达株系,且BpMYB4基因已经成功整合到白桦基因组上,定量结果发现MYB-8、MYB-11、MYB-12转基因白桦中BpMYB4基因的表达量相对于非转基因对照株系(NT)上调幅度最大; 在低温胁迫下,过量表达BpMYB4基因提高了白桦的超氧化物歧化酶(SOD)活性、过氧化物酶(POD)活性、花青素(OPC)含量、过氧化氢酶活性(CAT)、可溶性糖含量、可溶性蛋白含量和脯氨酸(PRO)含量,同时降低了转基因白桦的丙二醛(MDA)的含量。【结论】BpMYB4转基因白桦在低温胁迫下能够产生具有保护作用的物质,具有一定的抵抗低温的能力,因此,可以将其培育成抗冻优选株系。
Abstract:
【Objective】Our objective was to understand the functions of the BpMYB4 gene during low-temperature stress.【Method】We performed the following experiments in this study. Firstly, we analyzed the expression pattern of the BpMYB4 gene in different tissues of birch, including roots, stems, leaves, xylem and buds. Secondly, we constructed the plant overexpression vector of PGWB2-BpMYB4, and generated birch transgenic lines that overexpressed BpMYB4 using Agrobacterium-mediated transformation. Then, a polymerase chain reaction(PCR)and quantitative real-time PCR(qRT-PCR)were used to identify the transformants. Finally, we examined eight physiological indexes of transgenic birch under low temperature using spectrophotometry.【Result】Campare with the expression of BpMYB4 in buds, the highest expression level of BpMYB4 was in the veins of the third leaf and the tender stems between the first leaf and the second leaf. We obtained 13 independent 35S::BpMYB4 transgenic lines and PCR results provided preliminary evidence that exogenous BpMYB4 was integrated into the genome of birch. qRT-PCR results indicated that BpMYB4 expression in MYB-8, MYB-11 and MYB-12 lines was significantly higher than that in the non-transgenic birch(NT). Under cool stress, overexpression of the BpMYB4 gene in birch increased enzyme activities of SOD, POD and CAT. Overexpression of BpMYB4 also increased contents of OPC, soluble sugar, soluble protein, and proline. Compared to NT, the content of malondialdehyde(MDA)in transgenic birch was reduced.【Conclusion】The results indicated that BpMYB4 transgenic birch could produce protective substances under cold stress, and it will have an ability to resist cold. It can be developed into a freeze-resistant preferred strain.

参考文献/References:

[1] 吉林省人社厅引智项目管理处. 高寒地区优良林木品种的引进及利用[J]. 劳动保障世界, 2017(31):37. DOI: 10.3969/j.issn.1007-7243.2017.31.024.
Jilin Provincial Department of Human Resources and Social Security. Introduction Project Management Office. Introduction and utilization of fine tree species in alpine regions[J]. Labor Security World, 2017(31):37.
[2] 刘建芳, 周瑞莲, 赵梅. 作物抗冻机理及抗冻基因研究进展[J]. 鲁东大学学报(自然科学版), 2010, 26(3):258-265. DOI: 10.3969/j.issn.1673-8020.2010.03.017.
LIU J F, ZHOU R L, ZHAO M. Progress in crops mechanism of freezing tolerance and antifreeze gene[J]. Ludong University Journal(Natural Science Edition), 2010, 26(3):258-265.
[3] 乌凤章. 白桦低温胁迫响应与叶绿体RNA结合蛋白的蛋白质组学研究[D]. 哈尔滨:东北林业大学, 2008.
WU F Z. Proteomic analysis of low temperature tress responses and chloroplast RNA binding proteins in Betula platyphlla[D]. Harbin: Northeast Forestry University, 2008.
[4] 陈清, 汤浩茹, 董晓莉, 等. 植物Myb转录因子的研究进展[J]. 基因组学与应用生物学, 2009, 28(2):365-372. DOI:10.3969/gab.028.000365.
CHEN Q, TANG H R, DONG X L, et al. Progress in the study of plant Myb transcription factors[J]. Genomics and Applied Biology, 2009, 28(2): 365-372.
[5] 杜海. 植物MYB转录因子家族的分子进化机制及调控类黄酮生物合成MYB基因的鉴定[D]. 成都:四川农业大学, 2013.
DU H. Molecular evolution of MYB transcription factor gene family in plants and characterization of the MYB genes involved in flavonoid biosynthesis [D]. Chengdu: Sichuan Agricultural University, 2013.
[6] VANNINI C, LOCATELLI F, BRACALE M, et al. Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants[J].Plant Journal, 2004, 37(1):115-127. DOI: 10.1046/j.1365-313X.2003.01938.x.
[7] VANNINI C, IRITI M, BRACALE M, et al. The ectopic expression of the rice Osmyb4, gene in Arabidopsis increases tolerance to abiotic, environmental and biotic stresses[J]. Physiological & Molecular Plant Pathology, 2006, 69(1): 26-42. DOI: 10.1016/j.pmpp.2006.12.005.
[8] PARK M R, YUN K Y, MOHANTY B, et al. Supra-optimal expression of the cold-regulated OsMyb4 transcription factor in transgenic rice changes the complexity of transcriptional network with major effects on stress tolerance and panicle development[J]. Plant Cell & Environment, 2010, 33(12):2209-2230. DOI: 10.1111/j.1365-3040.2010.02221.x.
[9] SOLTéSZ A, VáGJFALVI A, RIZZA F, et al. The rice Osmyb4, gene enhances tolerance to frost and improves germination under unfavourable conditions in transgenic barley plants[J]. Journal of Applied Genetics, 2012, 53(2):133-143. DOI: 10.1007/s13353-011-0081-x.
[10] CHANG S, PURYEAR J, CAIRNEY J. A simple and efficient method for isolating RNA from pine trees[J]. Plant Molecular Biology Reporter, 1993, 11(2): 113 - 116.DOI:10.1007IBF02670468.
[11] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method[J]. Methods, 2001, 25(4): 402 - 408. DOI:10.1006/meth.2001.1262.
[12] 董京祥, 任丽, 张园, 等. 白桦 BpTCPs基因家族生物信息学及时空表达分析[J]. 南京林业大学学报(自然科学版), 2018, 42(4):113-118. DOI: 10.3969 /j.issn.1000-2006.201709001.
DONG J X, REN L, ZHANG Y, et al. Bioinformatics and expression analysis of BpTCPs in Betula platyphylla Suk[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2018,42(4):113-118.
[13] 周坦洋, 罗芙蓉, 白彬. 葡萄籽原花青素生物药理活性的研究进展[J]. 哈尔滨医科大学学报, 2012, 46(1):94-96. DOI: 10.3969/j.issn.1000-1905.2012.01.028.
ZHOU T Y, LUO F R, BAI B. Advances in the pharmacological activity of proanthocyanidins in grape seed[J]. Journal of Harbin Medical University, 2012, 46(1):94-96.
[14] 赵明明, 周余华, 彭方仁, 等. 低温胁迫下冬青叶片细胞内 Ca2+水平及可溶性糖含量的变化[J]. 南京林业大学学报(自然科学版), 2013, 37(5):1-5. DOI:10.3969/j.issn.1006-2006.2013.05.001.
ZHAO M M, ZHOU Y H, PENG F R, et al. Changes of Ca2+ level and soluble sugar content in cells of Ilex L. leaflets under low temperature stress[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2013, 37(5):1-5.
[15] 林善枝, 李雪平, 张志毅. 低温锻炼对毛白杨幼苗抗冻性和总可溶性蛋白质的影响[J]. 林业科学, 2002, 38(6):137-141. DOI: 10.3321/j.issn:1001-7488.2002.06.022.
LIN S Z, LI X P, ZHANG Z Y. The effects of cold acclimation on the freezing resistance and total soluble protein in Populus tomentosa seedlings[J]. Scientia Silvae Sinicae, 2002, 38(6):137-141.
[16] 胡春霞, 王丽, 汤杰. 低温对南果梨的生理生化指标的影响[J]. 沈阳农业大学学报, 2009,40(3): 349-352. DOI: 10.3969/j.issn.1000-1700.2009.03.021.
HU C X, WANG L, TANG J. Effect of low temperature on physiological indicators of Nanguo-Pear[J]. Journal of Shenyang Agricultural University, 2009,40(3):349-352.
[17] 郭光艳, 柏峰, 刘伟,等. 转录因子对木质素生物合成调控的研究进展[J]. 中国农业科学, 2015, 48(7):1277-1287. DOI: 10.3864/j.issn.0578-1752.2015.07.03.
GUO G Y, BAI F, LIU W, et al. Advances in research of the regulation of transcription factors of lignin biosynthesis[J]. Scientia Agricultura Sinica, 2015, 48(7):1277-1287.
[18] 王勤礼, 许耀照, 闫芳, 等. 低温弱光盐胁迫对辣椒幼苗生长和生理特性的影响[J]. 中国农学通报, 2015, 31(22): 111-114.
WANG Q L, XU Y Z, YAN F, et al. Effects of low temperature, weak light and salt stress on growth and physiological characteristics of pepper seedling[J]. Chinese Agricultural Science Bulletin, 2015, 31(22): 111-114.

相似文献/References:

[1]官民晓,刘雪梅*,张 妍,等.白桦SPL8转录因子基因的分离及转录表达分析[J].南京林业大学学报(自然科学版),2013,37(03):017.[doi:10.3969/j.issn.1000-2006.2013.03.004]
 GUAN Minxiao,LIU Xuemei*,ZHANG Yan,et al.Isolation and transcription expression analysis of SPL8 transcription factors gene of Betula platyphylla[J].Journal of Nanjing Forestry University(Natural Science Edition),2013,37(01):017.[doi:10.3969/j.issn.1000-2006.2013.03.004]
[2]李园园,杨光,韦睿,等.转TabZIP基因白桦的获得及耐盐性分析[J].南京林业大学学报(自然科学版),2013,37(05):006.[doi:10.3969/j.issn.1000-2006.2013.05.002]
 LI Yuanyuan,YANG Guang,WEI Rui,et al.TabZIP transferred Betula platyphylla generation and salt tolerance analysis[J].Journal of Nanjing Forestry University(Natural Science Edition),2013,37(01):006.[doi:10.3969/j.issn.1000-2006.2013.05.002]
[3]李蕾蕾,孙丰坤,董 恒,等.白桦BpGT14基因表达模式及对非生物 胁迫诱导的响应[J].南京林业大学学报(自然科学版),2016,40(02):041.[doi:10.3969/j.issn.1000-2006.2016.02.007]
 LI Leilei,SUN Fengkun,DONG Heng,et al.The expression patterns of BpGT14 gene in Betula platypylla Suk. and the response to biotic stress[J].Journal of Nanjing Forestry University(Natural Science Edition),2016,40(01):041.[doi:10.3969/j.issn.1000-2006.2016.02.007]
[4]董京祥,任 丽,张 园,等.白桦BpTCPs基因家族生物信息学及时空表达分析[J].南京林业大学学报(自然科学版),2018,42(04):113.[doi:10.3969/j.issn.1000-2006.201709001]
 DONG Jingxiang,REN Li,ZHANG Yuan,et al.Bioinformatics and expression analysis of BpTCPs in Betula platyphylla Suk.[J].Journal of Nanjing Forestry University(Natural Science Edition),2018,42(01):113.[doi:10.3969/j.issn.1000-2006.201709001]
[5]孙 璐,杨 杰,王思瑶,等.白桦BpMYB21基因的克隆及其表达模式分析[J].南京林业大学学报(自然科学版),2018,42(04):119.[doi:10.3969/j.issn.1000-2006.201708017]
 SUN Lu,YANG Jie,WANG Siyao,et al.Cloning and expression pattern of BpMYB21 from Betula platyphylla Suk.[J].Journal of Nanjing Forestry University(Natural Science Edition),2018,42(01):119.[doi:10.3969/j.issn.1000-2006.201708017]
[6]杨 杰,孙 璐,王思瑶,等.3个白桦细胞色素P450基因生物信息学及表达分析[J].南京林业大学学报(自然科学版),2018,42(06):027.[doi:10.3969/j.issn.1000-2006.201803002]
 YANG Jie,SUN Lu,WANG Siyao,et al.Tissue specificity and hormone induced expression of three cytochrome P450 genes from Betula platyphylla Suk[J].Journal of Nanjing Forestry University(Natural Science Edition),2018,42(01):027.[doi:10.3969/j.issn.1000-2006.201803002]
[7]任 丽,董京祥,杨 洋,等.白桦BpTCP7基因启动子的克隆及表达分析[J].南京林业大学学报(自然科学版),2019,43(01):032.[doi:10.3969/j.issn.1000-2006.20186025]
 REN Li,DONG Jingxiang,YANG Yang,et al.Cloning and expression analysis of BpTCP7 promoter from Betula platyphylla[J].Journal of Nanjing Forestry University(Natural Science Edition),2019,43(01):032.[doi:10.3969/j.issn.1000-2006.20186025]

备注/Memo

备注/Memo:
收稿日期:2018-08-25 修回日期:2018-11-19基金项目:国家自然科学基金项目(31870659) 第一作者:张宇(1977792581@qq.com)。*通信作者:黄海娇(haijiao_sea@163.com),工程师,ORCID(0000-0001-7374-2249)。引文格式:张宇,陈肃,高源,等. BpMYB4基因在白桦中的遗传转化及低温胁迫应答反应[J]. 南京林业大学学报(自然科学版),2019,43(1):25-31.
更新日期/Last Update: 2019-01-28