[1]唐继新,贾宏炎,王 科,等.密度调控对米老排中龄人工林生长的影响[J].南京林业大学学报(自然科学版),2019,43(01):045-53.
 TANG Jixin,JIA Hongyan,WANG Ke,et al.Effect of density regulation on growth of Mytilaria laosensis plantation with middle age[J].Journal of Nanjing Forestry University(Natural Science Edition),2019,43(01):045-53.





Effect of density regulation on growth of Mytilaria laosensis plantation with middle age
唐继新12贾宏炎1王 科3曾 冀1郑 路1王亚南1杨保国1
1.中国林业科学研究院热带林业实验中心,广西 凭祥 532600; 2.中国林业科学研究院资源信息研究所, 北京 100091; 3.广西林业勘测设计院,广西 南宁 530001
TANG Jixin12 JIA Hongyan1WANG Ke3 ZENG Ji1 ZHENG Lu1 WANG Yanan1YANG Baoguo1
1. Experimental Center of Tropical Forestry, Chinese Academy of Forestry, Pingxiang 532600, China; 2. Research Institute of Forest Resources Information Techniques, CAF, Beijing 100091, China; 3 Guangxi Forestry Inventory and Planning Institute, Nanning 530001, China
米老排 密度调控 中龄林 人工林 平均木 优势木 生长 双侧t检验
Mytilaria laosensis density regulation middle age stand plantation mean tree dominant tree growth Student's t test
【目的】密度是影响林分生产力的关键因素之一,分析密度调控对米老排中龄林生长的影响,进而为其间伐密度调控提供决策依据。【方法】以南亚热带中等立地两种不同密度调控的米老排中龄林为对象,按优势木、中等木、被压木的条件选取了28株标准木(每林分各14株),基于2 m区分段的中央断面积树干解析法和双侧t检验的统计分析法,对不同调控密度下米老排林分的平均木、优势木和林分蓄积等生长过程进行对比分析。【结果】米老排径向生长的缓慢期在第1~2年,速生期在第3~10年,衰减期在第14年后。树高的早期速生特性明显,连年生长量呈多峰状,速生期主要在第2~6年。平均木与优势木材积生长的缓慢期均在前6年,从第8年起均进入速生期; 密度对平均木材积连年生长与林分数量成熟时间的影响显著,哨平试验林(在第12年经过生长伐1次,伐后林分最终密度为1 200株/hm2)数量成熟在第24年,而青山试验林(分别在第12年、第17年、第25年经过3次生长伐后,林分最终密度为520株/hm2)直至第34年仍未达到数量成熟。中弱度间伐(株数间伐强度<30%)对中龄林蓄积总生长量的影响不显著,对林分蓄积连年生长量短期有一定影响; 强度间伐(株数间伐强度>30%)对中龄林蓄积总生长量与连年生长量的影响显著(P<0.05)。在第14年后,米老排树种的实验形数趋于稳定。【结论】林分密度调控在520~1 200 株/hm2的范围内,密度调控措施对米老排平均木的胸径和材积的生长影响显著(P<0.05),对林分树高和平均实验形数的影响不显著,对优势木的胸径与材积的短期生长影响显著(P<0.05),对其长期生长的影响不显著,对减小林分径阶分化及提高大径木比例的作用明显。
【Objective】 Stand density regulation can promote the growth of trees, improve forest quality as well as forest stand structure, and play the key role in the technology of forest multi-function. Thus, reasonable stand density regulation can affect the achievement of a forest culture's goals and influence the full extent of the forest for greater benefits. To obtain a reasonable thinning measure for mid-maturation Mytilaria laosensis plantations, it is important to ascertain the effects of density regulation on plantation growth. 【Method】 Based on 28 analytic trees(14 analytic trees in each stand), including dominant trees, medium trees, and pressed trees, the growth of dominant trees, mean trees, and stand volume in two mid-maturation Mytilaria laosensis plantations(Qingshan stand and Shaoping stand)with different density regulation in the south subtropical area of China were compared. Comparisons were made using the tree stem analytic method of the middle section in 2 m and Student's t-test was conducted with data processing system software(DPS14.5). The Qingshan stand had an afforestation time in the spring of 1982, a planted density of 2 500 plants per hectare, and experienced one lighting cutting(in the 7th year)and three accretion cuttings(in the 12th, 17th, and 27th year; the stem thinning intensity was between 21%-42%)after afforestation; after which the forest stand density was 520 plants per hectare. For the Shaoping stand, planting time was in the spring of 1984, afforestation density was 2 500 plants per hectare, and the stand experienced once lighting cutting(in the 7th year)and one accretion cutting(in the 12th year; the stem thinning intensity was 27%); after thinning the stand density was 1 200 plants per hectare. 【Result】 ① The radial slow-growing period occurred during the first 1-2 years, and the fast-growing stage occurred at 3-10 years of age(annual increment of diameter at breast height(DBH)was during 0.72-2.45 cm), with attenuation starting at 14 years of age. ② Tree height exhibited distinct fast growing characteristics in the early stages of growth, spanning from the 2nd to the 6th year(annual growth of tree height was between 1.30-1.75 m), and the annual increment of tree height took on a multimodality. ③ The stock volume slow growth period of the medium trees and the dominant trees was in the first 6 years, giving way to a fast-growth period in the 8th year. Density regulation had a significant impact on the annual volume increment of the medium trees, as well as the stand quantitative maturity ages. The Shaoping stand reached quantity maturity in its 24th year, but for the Qingshan stand, it was not reached until the 34th year. ④ The intermediate and weak thinning operations, with the stem thinning intensity less than 30%, had no significant influence on the total growth of stand volume of the middle-aged stands, but could influence the annual increment of stand volume to some extent over a short time period. The high-intensity thinning practices, with the stem thinning intensity greater than 30%, had a significant influence on the total growth and the annual increment of stand volume. ⑤ After 14 years of age, the experimental form factor of the species tended to be stable(mean value between 0.41-0.42), and the step form level was Ⅲ- Ⅳ. 【Conclusion】 When the stem density fell into the range from 520 to 1 200 stems per hectare, the growth of tree height and the experimental form factor were not significantly affected by density regulation. The DBH growth and the stock volume growth of the mean trees were obviously affected by density regulation(P<0.05). The short-term DBH growth and stock volume growth of the dominant trees were also significantly affected by density regulation(P<0.05), but the influence was not significant in the long run. Density regulation can reduce the stand diameter order differentiation and can increase the percentage of large diameter stems. Dominant trees are in the forest's upper layer, being the most dynamic in the forest, the effect of stand density on tree height growth was very small. Thus, the tree height growth process can be used as key process parameters for the full cycle multi-function forest silviculture system design under different site conditions. Based on business objectives, timber market expectations, and other information, stand density regulation can control the stand maturity period, and decrease the risk of forest management.


[1] 刘世荣, 杨予静, 王晖. 中国人工林经营发展战略与对策:从追求木材产量的单一目标经营转向提升生态系统服务质量和效益的多目标经营[J]. 生态学报, 2018, 38(1):1-10.DOI:10.5846/stxb201712072201.
LIU S R, YANG Y J, WANG H.Development strategy and management countermeasures of planted forests in China:transforming from timber-centered single objective management towards multipurpose management for enhancing quality and benefits of ecosystem services[J]. Acta Ecologica Sinica, 2018, 38(1):1-10.
[2] 陈幸良, 巨茜, 林昆仑. 中国人工林发展现状、问题与对策[J]. 世界林业研究, 2014, 27(6):54-59.DOI:10.13348/j.cnki.sjlyyj.2014.06.008.
CHEN X L, JU Q, LIN K L.Development status, issues and countermeasures of China's plantation[J]. World Forestry Research,2014, 27(6):54-59.
[3] 段劼, 马履一, 贾黎明, 等. 北京地区侧柏人工林密度效应[J].生态学报, 2010, 30(12):3206-3214.
DUAN J,MA L Y,JIA L M, et al. The density effect of Platycladus orientalis plantation in Beijing area[J].Acta Ecologica Sinica,2010,30(12):3206-3214.
[4] 胡凌, 商侃侃, 张庆费,等. 密度调控对香樟人工林林木生长及空间分布的影响[J]. 西北林学院学报,2014,29(2):20-25.DOI:10.3969/j.issn.1001-7461.2014.02.04.
HU L, SHANG K K,ZHANG Q F, et al. Effects of density regulation on the growth and spatial distribution of Cinnamomum camphora plantation in Shanghai [J]. Journal of Northwest Forestry University, 2014,29(2):20-25.
[5] 于世川,张文辉,尤健健,等.抚育间伐对黄龙山辽东栎林木形质的影响[J]. 林业科学, 2017,53(11):104-113.DOI:10.11707/j.1001-7488.20171112.
YU S C,ZHANG W H,YOU J J, et al. Effect of thinning on Quercus wutaishanica tree form quality by the analytic hierarchy process in Huanglong Mountains[J]. Scientia Silvae Sinicae, 2017, 53(11): 104-113.
[6] 张杨峰. 造林密度对米老排凋落物量及养分归还特征的影响[D]. 北京:中国林业科学研究院,2017.
ZHANG Y F. Effects of planting densities on the litter production and nutrient return dynamics of Mytilaria laosensis plantation[D]. Beijing:Chinese Academy of Forestry, 2017.
[7] 谌红辉,方升佐,丁贵杰,等. 马尾松间伐的密度效应[J].林业科学,2010,46(5):84-90.DOI:10.11707/j.1001-7488.20100514.
CHEN H H,FANG S Z,DING G J, et al. Thinning density effects on masson pine plantation[J]. Scientia Silvae Sinicae, 2010, 46(5): 84-90.
[8] 段爱国, 张建国, 童书振, 等. 杉木人工林林分直径结构动态变化及其密度效应的研究[J]. 林业科学研究, 2004, 17(2):178-182.DOI:10.13275/j.cnki.lykxyj.2004.02.007.
DUAN A G, ZHANG J G, TONG S Z, et al. Studies on dynamics of diameter structure of Chinese fir plantations and affection of density on it[J]. Forest Research, 2004, 17(2): 178-182.
[9] 童书振, 盛炜彤, 张建国. 杉木林分密度效应研究[J]. 林业科学研究, 2002,15(1):66-75.DOI:10.13275/j.cnki.lykxyj.2002.01.011.
TONG S Z, SHENG W T, ZHANG J G.Studies on the density effects of Chinese fir stands[J]. Forest Research, 2002, 15(1):66-75.
[10] 刘青华, 周志春, 张开明, 等. 造林密度对不同马尾松种源生长和木材基本密度的影响[J]. 林业科学, 2010,46(9):58-63.DOI:10.14067/j.cnki.1673-923x.2011.06.033.
LIU Q H, ZHOU Z C, ZHANG K M, et al. Initial stand density and provenance effects on the growth and wood basic density of masson pine[J]. Scientia Silvae Sinicae, 2010, 46(9):58-63.
[11] 张连金, 惠刚盈, 孙长忠. 马尾松人工林首次间伐年龄的研究[J]. 中南林业科技大学学报, 2011,31(6):22-27.DOI:10.14067/j.cnki.1673-923x.2011.06.033.
ZHANG L J, HUI G Y, SUN C Z. The first thinning age of Pinus massoniana plantation[J]. Journal of Central South University of Forestry & Technology,2011,31(6):22-27.
[12] 李国雷, 刘勇, 吕瑞恒, 等. 华北落叶松人工林密度调控对林下植被发育的作用过程[J]. 北京林业大学学报, 2009, 31(1):19-31.DOI:10.13332/j.1000-1522.2009.01.016.
LI G L, LIU Y, LYU R H, et al. Responses of understory vegetation development to regulation of tree density in Larix principis-rupprechtii plantations[J]. Journal of Beijing Forestry University, 2009, 31(1):19-24.
[13] 田新辉, 孙荣喜, 李军, 等. 107杨人工林密度对林木生长的影响[J]. 林业科学, 2011, 47(3):184-188.DOI:10.11707/j.1001-7488.20110328.
TIAN X H, SUN R X,LI J, et al. Effects of stand density on growth of Populus × euramericana ‘Neva' plantations[J]. Scientia Silvae Sinicae, 2011, 47(3):184-188.
[14] 冯秋红, 吴晓龙, 徐峥静茹, 等. 密度调控对川西山地云杉人工林地被物及土壤水文特征的影响[J].南京林业大学学报(自然科学版), 2018,42(1):98-104.DOI:10.3969/j.issn.1000-2006.201601020.
FENG Q H, WU X L, XU Z J R, et al. Effects of density adjustment on ground cover and soil hydrological function of Picea asperata plantation in the subalpine region of western Sichuan Province, China[J].Journal of Nanjing Forestry University(Natural Sciences Edition), 2018, 42(1):98-104.
[15] 白灵海, 唐继新, 明安刚, 等. 广西大青山米老排人工林经济效益分析[J]. 林业科学研究, 2011, 24(6): 784-787.DOI:10.13275/j.cnki.lykxyj.2011.06.010.
BAI L H, TANG J X, MING A G, et al. Economic benefit analysis of 28-year-old Mytilaria laosensis plantations in Daqingshan, Guangxi of China [J]. Forest Research, 2011, 24(6): 784-787.
[16] 袁洁. 8个米老排天然群体的遗传多样性研究[D]. 北京:中国林业科学研究院, 2014.
YUAN J. Study on genetic diversity of eight natural populations of Mytilaria laosensis[D]. Beijing: Chinese Academy of Forestry, 2014.
[17] 郭文福, 蔡道雄, 贾宏炎, 等. 米老排人工林生长规律的研究[J].林业科学研究, 2006, 19(5): 585-589.DOI:10.3321/j.issn:1001-1498.2006.05.008.
GUO W F, CAI D X, JIA H Y, et al. Growth laws of Mytilaria laosensis plantation[J]. Forest Research, 2006, 19(5): 585-589.
[18] 王克建. 热带树种栽培技术[M]. 南宁:广西科学技术出版社, 2008.
WANG K J. Cultivation technique with tropical tree species in the south China[M]. Nanning: Guangxi Science and Technology Press, 2008.
[19] 郭文福. 米老排人工林生长与立地的关系[J]. 林业科学研究,2009, 22(6): 835-839.DOI:10.3321/j.issn:1001-1498.2009.06.015.
GUO W F. An analysis of relationship between growth and site condition of Mytilaria laosensis plantation[J]. Forest Research, 2009, 22(6): 835-839.
[20] 李炎香, 谭天泳, 黄镜光, 等. 米老排造林密度试验初报[J]. 林业科学研究, 1988, 1(2): 206-212.DOI:10.13275/j.cnki.lykxyj.1988.02.015.
LI Y X, TAN T Y, HUANG J G, et al. A preliminary report on the densities of Mytilaria laosensis plantation[J]. Forest Research, 1988, 1(2): 206-212.
[21] 郭文福,黄镜光.米老排抚育间伐研究[J].林业科学研究,1991,4(增刊):76-81.
GUO W F, HUANG J G. A technical study on the thinning for the plantation of Mytilaria laosensis[J]. Forest Research, 1991, 4(S): 76-81.
[22] 汪炳根,卢立华.同一立地营造不同树种林木生长与土壤理化性质变化的研究[J].林业科学研究,1995,8(3):334-339.DOI:10.13275/j.cnki.lykxyj.1995.03.017
WANG B G, LU L H. Effect of cultivation of different tree species on the tree increment and soil physical and chemical properties in the same site condition [J]. Forest Research, 1985, 8(3): 334-339.
[23] 孟宪宇. 测树学 [M].3 版. 北京: 中国林业出版社, 2006.
MENG X Y. Forest measurement [M]. 3rd ed. Beijing: China Forestry Publishing House, 2006.
[24] 唐守正. 围尺测径和轮尺测径的理论比较[J].林业勘测设计,1977(3):23-26.
TANG S Z. Theoretical comparison of circumference measurement and wheel diameter[J].Forest Resources Management, 1977(3): 23-26.
[25] 梁善庆,罗建举.人工林米老排木材的物理力学性质[J].中南林业科技大学学报,2007,5(10):97-116.DOI:10.3969/j.issn.1673-923X.2007.05.022.
LIANG S Q, LUO J J. Study of physical and mechanical properties of wood from Mytilaria laosensis plantation[J]. Journal of Central South University of Forestry & Technology, 2007,5(10):97-116.
[26] 吴淑玲. 米老排在漳州长泰生长规律初步研究[J]. 防护林科技, 2016(8): 22-25.DOI:10.13601/j.issn.1005-5215.2016.08.008.
WU S L. Growth law of Mytilaria laosensis in Changtai county of Zhangzhou City[J]. Protection Forest Science and Technology, 2016(8): 22-25.
[27] 林能庆, 洪永辉, 李蔚倩,等. 米老排人工林生长规律及生长模型拟合研究[J]. 林业勘察设计, 2017(3):22-28.
LIN N Q, HONG Y H, LI W Q,et al. Study on growth law and growth model of Mytilaria laosensis plantation[J]. Forestry Prospect and Design,2017(3):22-38.


[1]冯秋红,吴晓龙,徐峥静茹,等.密度调控对川西山地云杉人工林地被物及土壤水文特征的影响[J].南京林业大学学报(自然科学版),2018,42(01):098.[doi:10.3969/j.issn.1000-2006.201601020 ]
 FENG Qiuhong,WU Xiaolong,XU Zhengjingru,et al.Effects of density adjustment on ground cover and soil hydrological function of Piceaasperata plantation in the subalpine region of western Sichuan Province, China[J].Journal of Nanjing Forestry University(Natural Science Edition),2018,42(01):098.[doi:10.3969/j.issn.1000-2006.201601020 ]


收稿日期:2018-05-07 修回日期:2018-08-27 基金项目:全国森林经营科技支撑科研专项项目(1692017-1); 广西自然科学基金项目(2016GXNSFBA380087)。 第一作者:唐继新(tangjixin999@126.com),高级工程师,博士生,ORCID(0000-0002-5558-7094)。 引文格式:唐继新,贾宏炎,王科,等. 密度调控对米老排中龄人工林生长的影响[J]. 南京林业大学学报(自然科学版),2019,43(1):45-53.
更新日期/Last Update: 2019-01-28