[1]魏树和,徐 雷,韩 冉,等.重金属污染土壤的电动-植物联合修复技术研究进展[J].南京林业大学学报(自然科学版),2019,43(01):154-160.
 WEI Shuhe,XU Lei,HAN Ran,et al.Review on combined electrokinetic and phytoremediation technology for soil contaminated by heavy metal[J].Journal of Nanjing Forestry University(Natural Science Edition),2019,43(01):154-160.
点击复制

重金属污染土壤的电动-植物联合修复技术研究进展
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
43
期数:
2019年01期
页码:
154-160
栏目:
综合述评
出版日期:
2019-01-28

文章信息/Info

Title:
Review on combined electrokinetic and phytoremediation technology for soil contaminated by heavy metal
文章编号:
1000-2006(2019)01-0154-07
作者:
魏树和1徐 雷12韩 冉12窦薛楷12杨 微12
1.中国科学院沈阳应用生态研究所,污染生态与环境工程重点实验室,辽宁 沈阳 110016; 2.中国科学院大学资源与环境学院,北京 100039
Author(s):
WEI Shuhe1 XU Lei1 2 HAN Ran 12 DOU Xuekai 12 YANG Wei 12
1.Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; 2. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100039, China
关键词:
重金属 污染土壤 电场 植物修复
Keywords:
heavy metal contaminated soil electric field phytoremediation
分类号:
S714;X53
文献标志码:
A
摘要:
土壤电动修复是一种高效的原位修复技术。笔者就电场对植物富集重金属的作用、电场配置方式及其与添加剂的协同影响研究现状进行了分析。多数研究表明:选用合适的电场配置和电场强度,不仅能够提高土壤中重金属的有效性,进而促进植物对污染土壤中重金属的富集,而且对植物生物量具有一定的促进作用。总体来说,选用交流电场或是低强度的直流电场不仅能够提高重金属的生物有效性,还能够避免电场给植物造成的不利影响,是针对重金属污染土壤修复较好的选择。笔者认为,在重金属污染土壤植物修复领域,未来的研究重点在于加强超富集植物与电场联合修复机理研究,研发高效低廉环境友好型强化剂,最终形成针对一种或多种重金属污染土壤的植物-电动联合修复关键技术。
Abstract:
Electrokinetic remediation of soil is an efficient in situ remediation technology. In this article, the effects of electric fields such as voltage application, electric field intensity, additives and other factors on heavy metal accumulation in plants are reviewed. Most researches showed that choosing appropriate electric field configurations and intensities can improve the availability of heavy metals in soil, thereby promoting their uptake by plants and to some certain increasing plant biomass. In general, the selection of AC or low intensity DC electric fields can improve the bioavailability of heavy metals and also help to avoid the negative effects of electric fields on plants. Future research should focus on examining the mechanism of combined remediation by hyperaccumulators and electric fields, develop key methods of plant remediation such as high efficiency and low cost environmentally-friendly strengthening reagents, and create coupled electrokinetic remediation and phytoremediation technology for one or more heavy metal contaminated soils.

参考文献/References:

[1] SARWAR N, IMRAN M, SHAHEEN M R, et al. Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives[J]. Chemosphere, 2017, 171: 710-721. DOI:10.1016/j.chemosphere.2016.12.116.
[2] PEPPICELLI C, CLEALL P, SAPSFORD D, et al. Changes in metal speciation and mobility during electrokinetic treatment of industrial wastes: implications for remediation and resource recovery[J]. Science of the Total Environment, 2017, 624: 1488-1503. DOI:10.1016/j.scitotenv.2017.12.132.
[3] CAMESELLE C, CHIRAKKARA R A, REDDY K R. Electrokinetic-enhanced phytoremediation of soils: status and opportunities[J]. Chemosphere, 2013, 93(4): 626-636. DOI:10.1016/j.chemosphere.2013.06.029.
[4] LOBO B M C, PREZ-SANZ A, MARTNEZ-IIGO M J, et al. Influence of coupled electrokinetic-phytoremediation on soil remediation[G]// Electrochemical Remediation Technologies for Polluted Soils, Sediments and Groundwater. New Jersey: John Willey & Sons Inc., 2009: 417-437. DOI:10.1002/9780470523650.ch20.
[5] DERMONT G, BERGERON M, MERCIER G, et al. Soil washing for metal removal: a review of physical/chemical technologies and field applications[J]. Journal of Hazardous Materials, 2008, 152(1):1-31. DOI: 10.1016/j.jhazmat.2007.10.043.
[6] HE R, XI G, LIU K. Alleviating effect of extremely low frequency pulsed electric field on drought damage of maize seedling roots[J]. Journal of Luminescence, 2017, 188: 441-447. DOI:10.1016/j.jlumin.2017.04.042.
[7] QUAGLIARIELLO V, IAFFAIOLI R V, FALCONE M, et al. Effect of pulsed electric fields-assisted extraction on anti-inflammatory and cytotoxic activity of brown rice bioactive compounds[J]. Food Research International, 2016, 87:115-124. DOI: 10.1016/j.foodres.2016.07.005.
[8] KAG S, HAMID N, OEY I, et al. Red cherries(Prunus avium var. stella)processed by pulsed electric field-physical, chemical and microbiological analyses[J]. Food Chemistry, 2018, 240:926-934. DOI: 10.1016/j.foodchem.2017.08.017.
[9] LUO J, YANG D, QI S, et al. Using solar cell to phytoremediate field-scale metal polluted soil assisted by electric field[J]. Ecotoxicology and Environmental Safety, 2018,165:404-410. DOI:10.1016/j.ecoenv.2018.09.031.
[10] O’CONNOR C S, LEPPI N W, EDWARDS R, et al. The combined use of electrokinetic remediation and phytoremediation to decontaminate metal-polluted soils: a laboratory-scale feasibility study[J]. Environmental Monitoring & Assessment, 2003, 84(1/2):141-158. DOI: 10.1023/A:1022851501118.
[11] LIM J M, SALIDO A L, BUTCHER D J. Phytoremediation of lead using Indian mustard(Brassica juncea)with EDTA and electrodics[J]. Microchemical Journal, 2004, 76(1):3-9. DOI: 10.1016/j.microc.2003.10.002.
[12] 仓龙, 周东美, 吴丹亚. 水平交换电场与EDDS螯合诱导植物联合修复Cu/Zn污染土壤[J]. 土壤学报, 2009, 46(4):729-735. DOI: 10.11766/trxb200710170424.
CANG L, ZHOU D M, WU D Y. Effects of horizontal exchange electric field and edds application on ryegrass uptake of copper/zinc and soil characteristics[J]. Acta Pedologica Sinica, 2009, 46(4):729-735.
[13] ABOUGHALMA H, BI R, SCHLAAK M. Electrokinetic enhancement on phytoremediation in Zn, Pb, Cu and Cd contaminated soil using potato plants[J]. Journal of Environmental Science and Health, Part A: Hazard Subst Environ Eng, 2008, 43(8): 926-933.DOI: 10.1080/10934520801974459.
[14] BI R, SCHLAAK M, SIEFERT E, et al.Influence of electrical fields(AC and DC)on phytoremediation of metal polluted soils with rapeseed(Brassica napus)and tobacco(Nicotiana tabacum)[J]. Chemosphere, 2011, 83(3):318-326.DOI: 10.1016/j.chemosphere.2010.12.052.
[15] CANG L, WANG Q, ZHOU D, et al. Effects of electrokinetic-assisted phytoremediation of a multiple-metal contaminated soil on soil metal bioavailability and uptake by Indian mustard[J]. Separation and Purification Technology, 2011, 79(2): 246-253. DOI: 10.1016/j.seppur.2011.02.016.
[16] PUTRA R S, OHKAWA Y, TANAKA S.Application of EAPR system on the removal of lead from sandy soil and uptake by Kentucky bluegrass(Poa pratensis L.)[J]. Separation and Purification Technology, 2013, 102(1):34-42. DOI: 10.1016/j.seppur.2012.09.025.
[17] CHIRAKKARA R A, REDDY K R, CAMESELLE C. Electrokinetic amendment in phytoremediation of mixed contaminated soil[J]. Electrochimica Acta, 2015, 181:179-191. DOI: 10.1016/j.electacta.2015.01.025.
[18] 肖文丹, 叶雪珠, 徐海舟,等. 直流电场与添加剂强化东南景天修复镉污染土壤[J]. 土壤学报, 2017, 54(4):927-937. DOI:10.11766/trxb201612130539.
XIAO W D, YE X Z, XU H Z, et al. Intensification of phytoremediation of Cd contaminated soil with direct current field and soil amendments in addition to hyperaccumulator Sedum alfredii[J]. Acta Pedologica Sinica, 2017, 54(4):927-937.
[19] LUO J, CAI L, QI S, et al. Influence of direct and alternating current electric fields on efficiency promotion and leaching risk alleviation of chelator assisted phytoremediation[J]. Ecotoxicol Environ Saf, 2018, 149:241-247.DOI: 10.1016/j.ecoenv.2017.12.005.
[20] CANG L, ZHOU D M, WANG Q Y, et al.Impact of electrokinetic-assisted phytoremediation of heavy metal contaminated soil on its physicochemical properties, enzymatic and microbial activities[J]. Electrochimica Acta, 2012, 86(4):41-48. DOI: 10.1016/j.electacta.2012.04.112.
[21] MIRANSARI M.Soil microbes and plant fertilization[J]. Applied Microbiology and Biotechnology, 2011, 92(5):875-885. DOI: 10.1007/s00253-011-3521-y.
[22] LUO Q, ZHANG X, WANG H, et al.The use of non-uniform electrokinetics to enhance in situ bioremediation of phenol-contaminated soil[J]. Journal of Hazardous Materials, 2005, 121(1):187-194. DOI: 10.1016/j.jhazmat.2005.02.007.
[23] ACOSTA-SANTOYO G, CAMESELLE C, BUSTOS E. Electrokinetic-Enhanced ryegrass cultures in soils polluted with organic and inorganic compounds[J]. Environmental Research, 2017, 158:118. DOI: 10.1016/j.envres.2017.06.004.
[24] HUANG J W, SHAFF J E, GRUNES D L, et al. Aluminum effects on calcium fluxes at the root apex of aluminum-tolerant and aluminum-sensitive wheat cultivars[J]. Plant Physiology, 1992, 98(1):230-237. DOI: 10.1104/pp.98.1.230.
[25] CHO M R, THATTE H S, SILVIA M T, et al.Transmembrane calcium influx induced by ac electric fields.[J]. Faseb Journal, 1999, 13(6):677. DOI: 10.1096/fasebj.13.6.677.
[26] 姚桂华. 交流电场-有机物料提高东南景天修复重金属污染土壤效率的研究[D]. 临安:浙江农林大学, 2015.
YAO G H. Effects of alternating current(AC)field and organic materials on improving the efficiency of Sedum alfredii Hance to remediate heavy metal contaminated soil[D]. Lin’an:Zhejiang A & F University, 2015.
[27] ROJANAPITHAYAKORN D, ARIYAKANON N. Electrokinetic enhancement on phytoremediation in Zinc contaminated soil by ruzi grass[J]. Environmentasia, 2016, 9(1). DOI: 10.14456/ea.1473.11.
[28] 方振东, 汪家权, 盛晶梦. 不同电极电动修复铜镉复合污染土壤的研究[J]. 广东化工, 2014, 41(13):23-24. DOI:10.3969/j.issn.1007-1865.2014.13.011.
FANG Z D, WANG J Q, SHENG J M. Research on electrokinetic remediation of copper and cadmium contaminated soil with different electrodes[J]. Guangdong Chemical Industry, 2014, 41(13):23-24.
[29] 黄益宗, 郝晓伟, 雷鸣,等. 重金属污染土壤修复技术及其修复实践[J]. 农业环境科学学报, 2013, 3(3):409-417. DOI:10.11654/jaes.2013.03.001.
HUANG Y Z, HAO X W, LEI M, et al. The remediation technology and remediation practice of heavy metals-contaminated soil[J]. Journal of Agro-Environment Science, 2013, 3(3):409-417.
[30] LóPEZ-VIZCAíNO R, RISCO C, ISIDRO J, et al.Scale-up of the electrokinetic fence technology for the removal of pesticides. Part I: some notes about the transport of inorganic species[J]. Chemosphere, 2017, 166:540-548.DOI: 10.1016/j.chemosphere.2016.09.113.
[31] ZHOU D M, CHEN H F, CANG L, et al.Ryegrass uptake of soil Cu/Zn induced by EDTA/EDDS together with a vertical direct-current electrical field[J]. Chemosphere, 2007, 67(8):1671-1676. DOI: 10.1016/j.chemosphere.2006.11.042.
[32] HODKO D, HYFTE J V, DENVIR A, et al. Methods for enhancing phytoextraction of contaminants from porous media using electrokinetic phenomena: US, 6145244[P]. 2000-11-14. [2018-11-05]http://www.freepaterotonline.com/6145244.pdf.
[33] LAI H Y, CHEN Z S. The EDTA effect on phytoextraction of single and combined metals-contaminated soils using rainbow pink(Dianthus chinensis)[J]. Chemosphere, 2005, 60(8):1062-1071.DOI: 10.1016/j.chemosphere.2005.01.020.
[34] KIM S H, LEE I S. Comparison of the ability of organic acids and EDTA to enhance the phytoextraction of metals from a multi-metal contaminated soil[J]. Bull Environ Contam Toxicol, 2010, 84(2):255-259. DOI: 10.1007/s00128-009-9888-0.
[35] LIM J M, JIN B, BUTCHER D J. A Comparison of electrical stimulation for electrodic and EDTA-enhanced phytoremediation of lead using Indian mustard(Brassica juncea)[J]. Bulletin of the Korean Chemical Society, 2012, 33(33):2737-2740. DOI: 10.5012/bkcs.2012.33.8.2737.
[36] EBRAHIMI M. Effect of EDTA and DTPA on phytoremediation of Pb-Zn contaminated soils by Eucalyptus camaldulensis Dehnh and effect on treatment time.[J]. Desert, 2014. DOI: 10.22059/JDESERT.2014.51055.
[37] 徐海舟. 直流电场-东南景天联合修复Cd污染土壤效率的研究[D]. 临安:浙江农林大学, 2015.
XU H Z. Efficiency of direct current(DC)field and Sedum alfredii Hance on remediation to cadmium contaminated soil[D].Lin’an:Zhejiang A & F University, 2015.
[38] SINEGANI A A S, TAHNASBIAN I, SINEGANI M S. Chelating agents and heavy metal phytoextraction[G]// Heavy Metal Contamination of Soils. Berlin: Springer International Publishing, 2015:367-393. DOI: 10.1007/978-3-319-14526-6.

相似文献/References:

[1]陈三雄,谢 莉,陈家栋,等.露天开采矿区土壤重金属污染状况评价[J].南京林业大学学报(自然科学版),2012,36(03):059.[doi:10.3969/j.jssn.1000-2006.2012.03.013]
 CHEN Sanxiong,XIE Li,CHEN Jiadong,et al.Evaluation on soil heavy metal pollution at Dabaoshan mine in Guangdong province[J].Journal of Nanjing Forestry University(Natural Science Edition),2012,36(01):059.[doi:10.3969/j.jssn.1000-2006.2012.03.013]
[2]薛红琴,赵尘,孔思达.城市道路路面沉积物重金属污染程度评价[J].南京林业大学学报(自然科学版),2012,36(06):121.[doi:10.3969/j.jssn.1000-2006.2012.06.024]
 XUE Hongqin,ZHAO Chen,KONG Sida.Evaluation of heavy metals pollution in urban road deposited sediments[J].Journal of Nanjing Forestry University(Natural Science Edition),2012,36(01):121.[doi:10.3969/j.jssn.1000-2006.2012.06.024]
[3]王再岚,何江*,智颖飙,等.公路旁侧土壤一植物系统中的重金属分布特征[J].南京林业大学学报(自然科学版),2006,30(04):015.[doi:10.3969/j.jssn.1000-2006.2006.04.004]
 WANG Zai-lan,HE Jiang*,ZHI Ying-biao,et al.The Distribution Characteristics of Heavy Metals Pollutants in Soil-plant System Along Highway[J].Journal of Nanjing Forestry University(Natural Science Edition),2006,30(01):015.[doi:10.3969/j.jssn.1000-2006.2006.04.004]
[4]张炜鹏,陈金林*,黄全能,等.南方主要绿化树种对重金属的积累特性[J].南京林业大学学报(自然科学版),2007,31(05):125.[doi:10.3969/j.jssn.1000-2006.2007.05.029]
 ZHANG Wei-peng,CHEN Jin-lin*,HUANG Quan-neng,et al.Trees’ Phytoextraction of Heavy Metals in the Soil of South China[J].Journal of Nanjing Forestry University(Natural Science Edition),2007,31(01):125.[doi:10.3969/j.jssn.1000-2006.2007.05.029]
[5]栾以玲,姜志林,吴永刚.栖霞山矿区植物对重金属元素富集能力的探讨[J].南京林业大学学报(自然科学版),2008,32(06):069.[doi:10.3969/j.jssn.1000-2006.2008.06.016]
 LUAN Yi-ling,JIANG Zhi-lin,WU Yong-gang.Study on heavy metal accumulation ability of plant in Qixia Mountain[J].Journal of Nanjing Forestry University(Natural Science Edition),2008,32(01):069.[doi:10.3969/j.jssn.1000-2006.2008.06.016]
[6]朱丽珺,童春发,乐美麟,等.南京大厂区林区土壤重金属铜、镍、锌、锰含量分析[J].南京林业大学学报(自然科学版),1999,23(03):058.[doi:10.3969/j.jssn.1000-2006.1999.03.016]
 Author Zhu LijunTong ChunfaLe Meilin (Nanjing Forestry UniversityNanjing007) Wang Zhenshan.The Analysis of Heavy Metal Cu Ni Zn Mn in the Forest Soil in Nanjing Dachang[J].Journal of Nanjing Forestry University(Natural Science Edition),1999,23(01):058.[doi:10.3969/j.jssn.1000-2006.1999.03.016]
[7]方炎明,魏勇,张晓平,等.苔藓生物监测大气重金属污染研究进展[J].南京林业大学学报(自然科学版),2000,24(05):064.[doi:10.3969/j.jssn.1000-2006.2000.05.017]
 FANG Yan ming,WEI Yong,ZHANG Xiao ping,et al.Advance in Bry-monotoring of Atmosperic Heavy Metal Pollution[J].Journal of Nanjing Forestry University(Natural Science Edition),2000,24(01):064.[doi:10.3969/j.jssn.1000-2006.2000.05.017]
[8]李宏文,PaulKChien.三种水生植物的生态敏感度研究[J].南京林业大学学报(自然科学版),2000,24(S1):074.[doi:10.3969/j.jssn.1000-2006.2000.07.020]
 Li Hongwen (Suzhou Institute of Urban Construction and Environmental Protection Suzhou 0) Paul K Chien.A Study on Ecological Sensitivities of Three Aquatic Plants[J].Journal of Nanjing Forestry University(Natural Science Edition),2000,24(01):074.[doi:10.3969/j.jssn.1000-2006.2000.07.020]
[9]张金池,严逸伦,曾锋.重金属对森林生态系统效应的研究进展[J].南京林业大学学报(自然科学版),2001,25(05):052.[doi:10.3969/j.jssn.1000-2006.2001.05.014]
 ZHANG Jin-chi,YAN Yi-lun,ZENG Feng.Advance in the Research on Domino Effect of Heavy Metal Ions in Forest Ecosystem[J].Journal of Nanjing Forestry University(Natural Science Edition),2001,25(01):052.[doi:10.3969/j.jssn.1000-2006.2001.05.014]
[10]吴永刚,姜志林,罗强.公路边茶园土壤与茶树中重金属的积累与分布[J].南京林业大学学报(自然科学版),2002,26(04):039.[doi:10.3969/j.jssn.1000-2006.2002.04.010]
 WU Yong gang,JIANG Zhi lin,LUO Qiang.The Accumulation and Distribution of Heavy Metals in Teas on Both Sides of Highway[J].Journal of Nanjing Forestry University(Natural Science Edition),2002,26(01):039.[doi:10.3969/j.jssn.1000-2006.2002.04.010]

备注/Memo

备注/Memo:
收稿日期:2018-07-08 修回日期:2018-11-06基金项目:国家自然科学基金项目(41571300,31870488); 国家重点研发计划(2016YFD0800802)。 第一作者:魏树和(shuhewei@iae.ac.cn),研究员,博士, ORCID(0000-0001-6983-4394)。引文格式:魏树和,徐雷,韩冉,等. 重金属污染土壤的电动-植物联合修复技术研究进展[J]. 南京林业大学学报(自然科学版),2019,43(1):154-160.
更新日期/Last Update: 2019-01-28