[1]刘中原,姜 波,吕佳欣,等.刚毛柽柳Th2CysPrx基因的互作蛋白及其表达模式分析[J].南京林业大学学报(自然科学版),2019,43(02):086-92.[doi:10.3969/j.issn.1000-2006.201806018]
 LIU Zhongyuan,JIANG Bo,L Jiaxin,et al.Interacting proteins of Tamarix hispida Th2CysPrx and their expression pattern analysis[J].Journal of Nanjing Forestry University(Natural Science Edition),2019,43(02):086-92.[doi:10.3969/j.issn.1000-2006.201806018]
点击复制

刚毛柽柳Th2CysPrx基因的互作蛋白及其表达模式分析
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
43
期数:
2019年02期
页码:
086-92
栏目:
研究论文
出版日期:
2019-03-30

文章信息/Info

Title:
Interacting proteins of Tamarix hispida Th2CysPrx and their expression pattern analysis
文章编号:
1000-2006(2019)02-0086-07
作者:
刘中原 姜 波 吕佳欣 李新苹 高彩球*
(林木遗传育种国家重点实验室(东北林业大学),黑龙江 哈尔滨 150040)
Author(s):
LIU Zhongyuan JIANG Bo LÜ Jiaxin LI Xinping GAO Caiqiu*
(State Key Laboratory of Tree Genetics and Breeding(Northeast Forestry University), Harbin 150040, China)
关键词:
刚毛柽柳 酵母双杂交 互作蛋白 硫氧还蛋白过氧化物酶
Keywords:
Tamarix hispida yeast two-hybrid interacting protein 2CysPrx
分类号:
Q943.2
DOI:
10.3969/j.issn.1000-2006.201806018
文献标志码:
A
摘要:
【目的】使用酵母双杂交系统研究刚毛柽柳中获得的2CysPrx(硫氧还蛋白过氧化物酶)基因(命名为Th2CysPrx)及编码蛋白的功能。【方法】通过酵母双杂交系统对该基因编码蛋白的互作蛋白进行筛选,进一步利用qRT-PCR 技术分析NaCl 和PEG6000 胁迫下刚毛柽柳叶组织和根部组织中Th2CysPrx 基因与其互作蛋白基因的表达模式。【结果】酵母双杂交系统筛选获得了4 个可能与Th2CysPrx 互作的蛋白,分别为丙氨酸-乙醛酸转氨酶2(alanine-glyoxylate aminotransferase 2,ThAGT2)、苹果酸脱氢酶(malate dehydrogenase,ThMDH)、黄酮醇合酶(flavonol synthase,ThFLS)和扩展蛋白(expansin,ThEXP)。基因表达分析结果显示:盐胁迫下,柽柳叶和根中,Th2CysPrxThAGT2 基因的表达模式基本一致; 而干旱胁迫下,Th2CysPrxThAGT2 基因在叶和根中具有相同的表达模式。【结论】在盐和干旱胁迫下,ThAGT2 基因与Th2CysPrx 表达模式均趋于一致,表明Th2CysPrx 基因均可能通过与ThAGT2 基因的互作共同参与抗逆过程,为进一步研究Th2CysPrx 基因的抗逆机制,以及与其他抗逆基因的关系提供了依据。
Abstract:
【Objective】In order to study the stress resistance mechanisms of the Th2CysPrx, the cDNA sequence of Th2CysPrx was cloned. And the interacting proteins were further identified in this study. 【Method】The CDS of Th2CysPrx gene was amplified and cloned into the GAL4 DNA binding domain of the pGEBKT7 vector, which served as the BD construct(pGBKT7-Th2CysPrx). The cDNA library of T. hispida was cloned into the pGADT7-Rec vector as the AD constructions(cDNA library/AD). The interacted proteins of Th2CysPrx were identified by using yeast two-hybrid assay. The recombinant BD vectors were transformed into the yeast Y2HGold cells including AD library, which were then grown on SD/-Trp-Leu-His-Ade/X-α-Gal/Aureobasidin A medium(QDO/X/A). The clones were sequenced and analyzed. And these clones may be the interacting proteins of Th2CysPrx. Furthermore, the expression patters of the Th2CysPrx and the 4 interaction proteins was analyzed by using the qRT-PCR. Total RNA was extracted from stems or leaves of T. hispida under different stress treatments. One thousand nanograms of total RNA treated with DNaseI was reverse-transcribed into cDNA in a reaction volume of 10 μL according to the manufacturer's protocol. The synthesized cDNAs were diluted 10-fold with sterile water and used as templates for qRT-PCR. The α-tubulin, β-tubulin, and β-actin genes were used as internal references. Each experiment was carried out by three technical and three biological replicates. The relative expression ratios calculated from the cycle threshold(Ct)according to the delta-delta Ct method. 【Result】The results showed that four different proteins which may interacte with Th2CysPrx gene were obtained. They were ThAGT2(alanine-glyoxylate aminotransferase 2), ThMDH(malate dehydrogenase), ThFLS(flavonol synthase)and ThEXP(expansin)proteins. Compared with the control, the expressions of Th2CysPrx gene showed difference under 0.4 mol/L NaCl and 20% PEG6000 stresses. The expression pattern of the interacting protein gene of ThAGT2 was basically the same expression patterns with Th2CysPrx under salt stress in T. hispida leaves and roots. However, under drought stress, the expression of Th2CysPrx gene was only consistent with ThAGT2 gene. 【Conclusion】Taken together, these results suggest that the Th2CysPrx gene may participate in the stress resistance process through interaction with ThAGT2 gene under salt and drought stress. This study laid the foundation to further investigate resistance mechanism of Th2CysPrx gene.

参考文献/References:


[1] DAT J, VANDENABEELE S, VRANOVÃ E, et al. Dual action of the active oxygen species during plant stress responses[J]. Cellular Molecular Life Sciences, 2000, 57(5): 779-795. DOI:10.1007/s000180050041.
[2] CORPAS F J, SEVILLA F. Salt-induced oxidative stress mediated by activated oxygen species in pea leafmitochondria[J]. Physiologia Plantarum, 2010, 89(1): 103-110. DOI: 10.1111/j.1399-3054. 1993. tb01792.x.
[3] CIRCU M L, AW T Y. Reactive oxygen species, cellular redox systems, and apoptosis[J]. Free Radical Biology and Medicine, 2010, 48(6): 749-762. DOI: 10.1016/j.freeradbiomed.2009.12.022.
[4] LIM Y S, CHA M K, KIM H K, et al. Removals of hydrogen peroxide and hydroxyl radical by thiol-specific antioxidant protein as a possible role in vivo[J]. Biochemical Biophysical Research Communications, 1993, 192(1): 273-280. DOI: 10.1006/bbrc.1993.1410.
[5] BAIER M, DIETZ K J. Primary structure and expression of plant homologues of animal and fungal thioredoxin-dependent peroxide reductases and bacterial alkyl hydroperoxide reductases[J]. Plant Molecular Biology, 1996, 31(3): 553-564. DOI: 10.1007/BF00042228.
[6] BAIER M, DIETZ K J. The two-Cys peroxiredoxin Bas1: insight in a new family of plant peroxidases[J]. Plant Peroxidases, Biochemistry and Physiology, 1996: 204-209.
[7] BAIER M, DIETZ K J. The plant 2-Cys peroxiredoxin BAS1 is a nuclear-encoded chloroplast protein: its expressional regulation, phylogenetic origin, and implications for its specific physiological function in plants[J]. The Plant Journal, 1997, 12(1): 179-190. DOI: 10.1046/j.1365-313X.1997.12010179.x.
[8] CHEONG N E, CHOI Y O, LEE K O, et al. Molecular cloning, expression, and functional characterization of a 2Cys-peroxiredoxin in chinese cabbage[J]. Plant Molecular Biology, 1999, 40(5): 825-834. DOI: 10.1023/A:1006271823973.
[9] BERBERICH T, UEBLER M, FEIERABEND J. Cloning of a cDNA encoding a thioredoxin peroxidase(TPx)homolog from winter rye(Secale cereale L)(Accession No. AF076920)(PGR98-167)[J]. Plant Physiology, 1998, 118: 711. DOI:10.1097/00003226-200204000-00006.
[10] HORLING F, BAIER M, DIETZ K J. Redox-regulation of the expression of the peroxide-detoxifying chloroplast 2-cys peroxiredoxin in the liverwort Riccia fluitans[J]. Planta, 2001, 214(2): 304-313. DOI: 10.1007/s004250100623.
[11] VEAL E A, FINDLAY V J, DAY A M, et al. A 2-Cys peroxiredoxin regulates peroxide-induced oxidation and activation of a stress-activated MAP kinase[J]. Molecular Cell, 2004, 15(1): 129-139. DOI: 10.1016/j.molcel.2004.06.021.
[12] BARFORD D. The role of cysteine residues as redox-sensitive regulatory switches[J]. Current Opinion in Structural Biology, 2004, 14(6): 679-686. DOI: 10.1016/j.sbi.2004.09.012.
[13] YANG K S, KANG S W, WOO H A, et al. Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid[J]. Journal of Biological Chemistry, 2002, 277(41): 38029-38036. DOI: 10.1074/jbc.M206626200.
[14] HIROTSU S, ABE Y, OKADA K, et al. Crystal structure of a multifunctional 2-Cys peroxiredoxin heme-binding protein 23 kDa/proliferation-associated gene product[J]. Proceedings of the National Academy of Sciences, 1999, 96(22): 12333-12338. DOI: 10.1073/pnas.96.22.12333.
[15] MOON J C, HAH Y S, KIM W Y, et al. Oxidative stress-dependent structural and functional switching of a human 2-Cys peroxiredoxin isotype II that enhances HeLa cell resistance to H2O2-induced cell death[J]. Journal of Biological Chemistry, 2005, 280(31): 28775-28784. DOI: 10.1074/jbc.M505362200.
[16] JANG H H, LEE K O, CHI Y H, et al. Two enzymes in one: two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function[J]. Cell, 2004, 117(5): 625-635. DOI: 10.1016/j.cell.2004.05.002.
[17] HOSSAIN M S, ELSAYED A I, MOORE M, et al. Redox and reactive oxygen species network in acclimation for salinity tolerance in sugar beet[J]. Journal of Experimental Botany, 2017, 68(5): 1283-1298. DOI: 10.1093/jxb/erx019.
[18] ZHANG H, XU N, LI X, et al. Overexpression of 2-Cys Prx increased salt tolerance of photosystem II in tobacco[J]. International Journal of Agriculture Biology, 2017, 19(4):1-42. DOI: 10.17957/IJAB/15.0348.
[19] KIM K H, ALAM I, LEE K W, et al. Enhanced tolerance of transgenic tall fescue plants overexpressing 2-Cys peroxiredoxin against methyl viologen and heat stresses[J]. Biotechnology Letters, 2010, 32(4): 571-576. DOI: 10.1007/s10529-009-0185-0.
[20] GAO C, ZHANG K, YANG G, et al. Expression analysis of four peroxiredoxin genes from Tamarix hispida in response to different abiotic stresses and exogenous abscisic acid(ABA)[J]. International Journal of Molecular Sciences, 2012, 13(3): 3751-3764. DOI: 10.3390/ijms13033751.
[21] 宁坤,宋鑫,李慧玉. 柽柳GF14基因的克隆与表达分析[J]. 南京林业大学学报(自然科学版), 2016, 40(2): 33-40. DOI: 10. 3969/j. issn.1000-2006. 2016. 02. 006.
NING K, SONG X, LI H Y.Cloning and expression analysis of ThGF14 gene in Tamarix hispida[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2016, 40(2): 33-40.
[22] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4): 402-408. DOI: 10.1006/meth.2001.1262.
[23] 张凯敏,王玉成,杨桂燕,等. 柽柳ThPR1基因的克隆与表达分析[J]. 南京林业大学学报(自然科学版), 2013, 37(2):45-49. DOI: 10.3969/j.issn.1000-2006.2013.02.008.
ZHANG K M, WANG Y C, YANG G Y, et al. Clone and expression analysis of ThPRl gene in Tamarix hispida[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2013, 37(2): 45-49.
[24] WANG Q J, SUN H, DONG Q L,et al. The enhancement of tolerance to salt and cold stresses by modifying the redox state and salicylic acid content via the cytosolic malate dehydrogenase gene in transgenic apple plants[J]. Plant Biotechnology Journal, 2016, 14(10): 1986-1997. DOI: 10.1111/pbi.12556.
[25] LI X, KIM Y B, KIM Y, et al. Differential stress-response expression of two flavonol synthase genes and accumulation of flavonols in tartary buckwheat[J]. Journal of Plant Physiology, 2013,170(18):1630-1636. DOI: 10.1016/j.jplph.2013.06.010.
[26] HAN Y Y, LI A X, LI F, et al. Characterization of a wheat(Triticum aestivum L.)expansin gene, TaEXPB23, involved in the abiotic stress response and phytohormone regulation[J]. Plant Physiology and Biochemistry, 2012, 54, 49-58. DOI: 10.1016/j.plaphy.2012.02.007.
[27] NAKAMURA Y, TOLBERT N E. Serine: glyoxylate, alanine: glyoxylate, and glutamate: glyoxylate aminotransferase reactions in peroxisomes from spinach leaves[J]. Journal of Biological Chemistry, 1983, 258(12): 7631-7638.
[28] REHFELD D W, TOLBERT N E. Aminotransferases in peroxisomes from spinach leaves[J]. Journal of Biological Chemistry, 1972, 247(15): 4803-4811. DOI: 10.1007/BF01539064.
[29] HUSIC D W, HUSIC H D, TOLBERT N E, et al. The oxidative photosynthetic carbon cycle or C2 cycle[J]. Critical Reviews in Plant Sciences, 1987, 5(1): 45-100. DOI: 10.1080/07352688709382234.
[30] SOMERVILLE C R, OGREN W L. Genetic modification of photorespiration[J]. Trends in Biochemical Sciences, 1982, 7(5): 171-174. DOI: 10.1016/0968-0004(82)90130-X.
[31] 金怡,刘合芹,汪得凯,等. 植物光呼吸分子机制研究进展[J]. 中国农学通报, 2011, 27(3): 232-236. DOI: 1000-6850(2011)27:3<232:ZWGHXF>2.0.TX; 2-N.
JIN Y, LIU H Q, WANG D K, et al. The progress of molecular mechanisms of photorespiration in plants[J]. Chinese Agricultural Science Bulletin, 2011, 27(3): 232-236.
[32] KOZAKI A, TAKEBA G. Photorespiration protects C3 plants from photooxidation[J]. Nature, 1996, 384(6609): 557-560. DOI: 10.1038/384557a0.
[33] FOYER C H, NOCTOR G. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications[J]. Antioxidants Redox Signaling, 2009, 11(4): 861-905. DOI: 10.1089/ars.2008.2177.
[34] OSMOND C B, GRACE S C.Perspectives on photoinhibition and photorespiration in the field: quintessential inefficiencies of the light and dark reactions of photosynthesis[J]. Journal of Experimental Botany, 1995: 1351-1362. DOI: 10.1093/jxb/46.special_issue.1351.
[35] CHUNG E, KIM K M, HEO J E, et al. Molecular characterization of mungbean peroxisomal alanine glyoxylate aminotransferase gene induced by low temperature stress[J]. Genes Genomics, 2009, 31(1): 11-18. DOI: 10.1007/BF03191133.

相似文献/References:

[1]张凯敏,王玉成,杨桂燕,等.柽柳ThPR1基因的克隆与表达分析[J].南京林业大学学报(自然科学版),2013,37(02):045.[doi:10.3969/j.issn.1000-2006.2013.02.008]
 ZHANG Kaimin,WANG Yucheng,YANG Guiyan,et al.Clone and expression analysis of ThPR1 gene in Tamarix hispida[J].Journal of Nanjing Forestry University(Natural Science Edition),2013,37(02):045.[doi:10.3969/j.issn.1000-2006.2013.02.008]
[2]杨桂燕,于丽丽,赵玉琳,等.刚毛柽柳TheIF1A基因转入酵母的抗逆能力分析[J].南京林业大学学报(自然科学版),2014,38(05):062.[doi:10.3969/j.issn.1000-2006.2014.05.013]
 YANG Guiyan,YU Lili,ZHAO Yulin,et al.Stress tolerance analysis of a Tamarix hispida TheIF1A in Saccharomyces cerevisiae[J].Journal of Nanjing Forestry University(Natural Science Edition),2014,38(02):062.[doi:10.3969/j.issn.1000-2006.2014.05.013]

备注/Memo

备注/Memo:
收稿日期:2018-06-26 修回日期:2018-09-08
基金项目:国家自然科学基金项目(31670679); 黑龙江省杰出青年科学基金(JC2017004)。
第一作者:刘中原(zhongyuanliu66@163.com)。
*通信作者:高彩球(gaocaiqiu@njfu.edu.cn),教授,ORCID(0000-0001-9953-9778)。
更新日期/Last Update: 2019-03-30