[1]李成龙,刘延惠,丁访军*,等.茂兰喀斯特森林小果润楠蒸腾特征及影响因素[J].南京林业大学学报(自然科学版),2019,43(03):051-58.[doi:10.3969/ j.issn.1000-2006.201808018]
 LI Chenglong,LIU Yanhui,DING Fangjun*,et al.Transpiration characteristics and influencing factors of the dominant species of Machilus microcarpa in Maolan Karst forest[J].Journal of Nanjing Forestry University(Natural Science Edition),2019,43(03):051-58.[doi:10.3969/ j.issn.1000-2006.201808018]
点击复制

茂兰喀斯特森林小果润楠蒸腾特征及影响因素
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
43
期数:
2019年03期
页码:
051-58
栏目:
研究论文
出版日期:
2019-05-15

文章信息/Info

Title:
Transpiration characteristics and influencing factors of the dominant species of Machilus microcarpa in Maolan Karst forest
文章编号:
1000-2006(2019)03-0051-08
作者:
李成龙1刘延惠2丁访军2* 舒德远2崔迎春2 赵文君2侯贻菊2吴 鹏2
1.贵州大学生命科学学院,贵州 贵阳 550025; 2.贵州省林业科学研究院,贵州 贵阳 550005
Author(s):
LI Chenglong1 LIU Yanhui2 DING Fangjun2* SHU Deyuan2 CUI Yingchun2 ZHAO Wenjun2 HOU Yiju2 WU Peng2
1. College of Life Sciences, Guizhou University, Guiyang 550025, China; 2. Guizhou Academy of Forestry, Guiyang 550005, China
关键词:
小果润楠 水分蒸腾特征 环境因子 喀斯特森林
Keywords:
Machilus microcarpa transpiration characteristics environmental factor Karst forest
分类号:
S718.5
DOI:
10.3969/ j.issn.1000-2006.201808018
文献标志码:
A
摘要:
【目的】探究喀斯特森林优势树种小果润楠蒸腾特征及其影响因素,为进一步分析茂兰喀斯特原生林的水文生态过程及喀斯特地区森林的保护与生态修复提供科学依据。【方法】基于热扩散探针法和Campbell自动气象站,于2016年7月—2017年6月,对茂兰喀斯特森林优势树种小果润楠的蒸腾量进行了为期1年的连续监测。【结果】小果润楠蒸腾的日变化过程在各种天气条件下均呈典型的单峰型曲线,且呈明显的“昼高夜低”变化规律。晴天条件下,单木水平蒸腾速率日变化和叶片水平的光合速率、蒸腾速率日变化趋势基本一致。不同天气条件下的蒸腾通量为晴天(122.00 g/h)>阴天(76.06 g/h)>雨天(19.60 g/h),且差异极显著,晴天的日平均蒸腾通量是阴天的1.60倍,是雨天的6.22倍,阴天是雨天的3.88倍。各季节的单株日均蒸腾量依次为夏季[(1.86±0.22)kg/d]>秋季[(1.71±0.38)kg/d]>春季[(1.59±0.13)kg/d]>冬季[(1.07±0.39)kg/d],全年单木蒸腾量为570.31 kg,其中生长季蒸腾量(472.29 kg)占全年蒸腾量的82.81%,非生长季蒸腾量(98.02 kg)占17.19%。各季节的蒸腾量以夏季(171.65 kg)最高,其次是秋季(155.60 kg),春季(145.04 kg)较低,冬季(98.02 kg)最低,分别占全年蒸腾量的30.10%、27.28%、25.43%和17.19%。相关分析和回归分析结果表明,太阳辐射和水汽压亏缺与蒸腾速率均呈正相关。【结论】太阳辐射和水汽压亏缺为蒸腾主导因子,降雨对蒸腾多是抑制作用,而风速和不同深度的土壤水分对蒸腾的作用因天气和季节的不同而存在差异。
Abstract:
【Objective】The transpiration characteristics and influencing factors of the dominant tree species Machilus microcarpa in the Maolan Karst forest were determined. This provided scientific basis for further analysis of the hydro-ecological process of the Maolan primary forest and the Karst area of forest protection and ecological restoration. 【Method】 Utilizing the thermal dissipation probe method and a Campbell automatic weather station, the transpiration of the dominant tree species M. microcarpa was continuously monitored from July 2016 to June 2017 in the Maolan Karst forest, and the photosynthetic and transpiration rates of the leaves measured. 【Result】 The diurnal variation of M. microcarpa transpiration rate showed a typical single-peak curve under all types of weather conditions, and displayed a clear fluctuating trend with high transpiration in the daytime and low transpiration at nighttime. Under sunny weather conditions, the diurnal variation trend of the horizontal transpiration rate of a single tree was consistent with that of the photosynthesis rate and transpiration rate at the leaf level. Under different weather conditions, the transpiration rate showed highly significant differences, with the following averages: 122.00 g/h on sunny days, 76.06 g/h on cloudy days, and 19.60 g/h on rainy days. The daily average transpiration rates on sunny days were 1.60, 6.22 times higher than that on cloudy days, rainy days, respectively. The daily average transpiration rates on cloudy days was 3.88 times higher than that on rainy day. The average annual transpiration rate of individual trees in each season went from high to low in summer [(1.86 ± 0.22)kg/d], autumn [(1.71 ± 0.38)kg/d], spring [(1.59 ± 0.13)kg/d] and winter [(1.07 ± 0.39)kg/d]. The individual plant transpiration rate was 570.31 kg, with 82.81% during the growing season(472.29 kg)and 17.19% during the non-growing season(98.02 kg). The highest transpiration rate was in summer(171.65 kg), followed by autumn(155.60 kg), spring(145.04 kg)and winter(98.02 kg), which accounted for 30.10%, 27.28%, 25.43% and 17.19% of the annual evapotranspiration, respectively. Solar radiation and water vapor pressure were positively correlated with the transpiration rate. 【Conclusion】 Solar radiation and water vapor pressure loss were the dominant factors of the transpiration of M. microcarpa, and rainfall was the inhibition factor, whereas wind speed and soil moisture at different depths had different effects on transpiration under different weather and seasons.

参考文献/References:

[1] BAUERLE W L, WHITLOW T H, POLLOCK C R, et al. A laser-diode-based system for measuring sap flow by the heat-pulse method[J]. Agricultural and Forest Meteorology, 2002, 110(4): 275-284. DOI:10.1016/s0168-1923(01)00296-9.
[2] GRANIER A, BOBAY V, GASH J H C, et al. Vapour flux density and transpiration rate comparisons in a stand of Maritime pine(Pinus pinaster Ait.)in Les Landes forest[J]. Agricultural and Forest Meteorology, 1990, 51(3/4): 309-319. DOI:10.1016/0168-1923(90)90115-m.
[3] CATOVSKY S, HOLBROOK M, BAZZAZ A. Coupling whole-tree transpiration and canopy photosynthesis in coniferous and broad-leaved tree species[J]. Canadian Journal of Forest Research, 2002, 32(2): 295-309. DOI:10.1139/x01-199.
[4] FORD C R, HUBBARD R M, KLOEPPEL B D, et al. A comparison of sap flux-based evapotranspiration estimates with catchment-scale water balance[J]. Agricultural and Forest Meteorology, 2007, 145(3/4): 176-185. DOI:10.1016/j.agrformet.2007.04.010.
[5] BRAUN P, SCHMID J. Sap flow measurements in grapevines(Vitis vinifera L.)1. Stem morphology and use of the heat balance method[J]. Plant and Soil, 1999, 215(1): 39-45. DOI:10.1023/A:1004756002983.
[6] IIDA S, TAKEUCHI S. Establishment of risk indicator of transplanting trees by sap flow measurements: an interdisciplinary research of hydrology and horticulture[J]. Journal of Japanese Association of Hydrological Sciences, 2015, 45(3): 89-94. DOI:10.4145/jahs.45.89.
[7] PETERS R L, FONTI P, FRANK D C, et al. Quantification of uncertainties in conifer sap flow measured with the thermal dissipation method[J]. New Phytologist, 2018, 219(4): 1283-1299. DOI:10.1111/nph.15241.
[8] 袁道先. 岩溶石漠化问题的全球视野和我国的治理对策与经验[J]. 草业科学, 2008, 25(9): 19-25. DOI:10.1007/s10499-007-9164-4.
YUAN D X. Global view on Karst rock desertification and integrating control measures and experiences of China[J]. Pratacultural Science, 2008, 25(9): 19-25.
[9] 刘丛强, 郎赟超, 李思亮, 等. 喀斯特生态系统生物地球化学过程与物质循环研究: 重要性、现状与趋势[J]. 地学前缘, 2009, 16(6): 1-12. DOI:10.3321/j.issn:1005-2321.2009.06.001.
LIU C Q, LANG Y C, LI S L, et al. Researches on biogeochemical processes and nutrient cycling in Karstic ecological systems, southwest China: a review[J]. Earth Science Frontiers, 2009, 16(6): 1-12.
[10] 俞国松, 王世杰, 容丽, 等. 茂兰喀斯特森林主要演替群落的凋落物动态[J]. 植物生态学报, 2011, 35(10): 1019-1028.DOI: 10.3724/SP.J.1258.2011.01019.
YU G S, WANG S J, RONG L, et al. Litter dynamics of major successional communities in Maolan Karst forest of China[J]. Chinese Journal of Plant Ecology, 2011, 35(10): 1019-1028.
[11] 刘延惠, 丁访军, 舒德远, 等. 茂兰喀斯特原生林细叶青冈树干液流环境响应特征[J]. 南京林业大学学报(自然科学版), 2017, 41(3): 77-85.DOI:10.3969/j.issn.1000-2006.201609052.
LIU Y H, DING F J, SHU D Y, et al. Characteristics of sap flow of Cyclobalanopsis gracilis in Maolan Karst original forests and its response to environmental factors[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2017, 41(3): 77-85.
[12] 卢森堡, 陈云明, 唐亚坤, 等. 黄土丘陵区混交林中油松和沙棘树干液流对降雨脉冲的响应[J]. 应用生态学报, 2017, 28(11): 3469-3478. DOI:10.13287/j.1001-9332.201711.013.
LU S B, CHEN Y M, TANG Y K, et al. Sap flux density in response to rainfall pulses for Pinus tabulaeformis and Hippophae rhamnoides from mixed plantation in hilly Loess Plateau[J]. Chinese Journal of Applied Ecology, 2017, 28(11): 3469-3478.
[13] 刘潇潇, 李国庆, 闫美杰, 等. 黄土高原主要树种树干液流研究进展[J]. 水土保持研究, 2017, 24(3): 369-373. DOI:10.13869/j.cnki.rswc.2017.03.063.
LIU X X, LI G Q, YAN M J, et al. Research progress on stem sap flow in major tree species on the Loess Plateau[J]. Research of Soil and Water Conservation, 2017, 24(3): 369-373.
[14] 张中峰, 黄玉清, 李先琨, 等. 岩溶区青冈栎树干液流特征及其与环境因子关系[J]. 中国岩溶, 2008, 27(3): 228-234.DOI:10.3969/j.issn.1001-4810.2008.03.006.
ZHANG Z F, HUANG Y Q, LI X K, et al. Features of Quercus glauca sap flow and its relationship to environmental factors in Karst terrain[J]. Carsologica Sinica, 2008, 27(3): 228-234.
[15] 黄玉清, 张中峰, 何成新, 等. 岩溶区青冈栎整树蒸腾的季节变化[J]. 应用生态学报, 2009, 20(2): 256-264. DOI:10. 13287/i. 1001-9332. 2009. 0036.
HUANG Y Q, ZHANG Z F, HE C X, et al. Seasonal variation of Cyclobalanopsis glauca whole-tree transpiration in Karst region[J]. Chinese Journal of Applied Ecology, 2009, 20(2): 256-264.
[16] 刘延惠, 舒德远, 崔迎春, 等. 茂兰喀斯特森林亚优势种短萼海桐树干液流特征及其环境因子响应[J]. 水土保持学报, 2016, 30(5): 205-211,217. DOI:10.13870/j.cnki.stbcxb.2016.05.034.
LIU Y H, SHU D Y, CUI Y C, et al. The characteristics of sap flow of pittosporum brevicalyx as subdominant tree species in Maolan Karst forests and its to environmental factors[J]. Journal of Soil and Water Conservation, 2016, 30(5): 205-211,217.
[17] 吴鹏,杨文斌,崔迎春,等.喀斯特区天峨槭树干液流特征及其与环境因子的相关分析[J].生态学报,2017,37(22):7552-7567.DOI: 10.5846/stx6201609251934.
WU P, YANG W B, CUI Y C, et al. Characteristics of sap flow and correlation analysis with environmental factors of Acer wangchii in the Karst area[J].Acta Ecologica Sinica, 2017,37(22):7552-7567.
[18] 张慧玲, 丁亚丽, 陈洪松, 等. 出露基岩生境典型植物树干液流对自然降水和连续干旱的响应特征[J]. 应用生态学报, 2018, 29(4): 1117-1124. DOI:10.13287/j.1001-9332.201804.021.
ZHANG H L, DING Y L, CHEN H S, et al. Responses of sap flow to natural rainfall and continuous drought of tree species growing on bedrock outcrops[J]. Chinese Journal of Applied Ecology, 2018, 29(4): 1117-1124.
[19] Granier A. A new method of sap flow measurement in tree stems[J]. Annales Des Sciences Forestieres, 1985, 42(2):193-200.
[20] 陈立欣, 张志强, 李湛东, 等. 大连4种城市绿化乔木树种夜间液流活动特征[J]. 植物生态学报, 2010, 34(5): 535-546. DOI:10.3773/j.issn.1005-264x.2010.05.007.
CHEN L X, ZHANG Z Q, LI Z D, et al. Nocturnal sap flow of four urban greening tree species in Dalian, Liaoning Province, China[J]. Chinese Journal of Plant Ecology, 2010, 34(5): 535-546.
[21] 马长明, 马玉洁, 程月明. 冀西北坝上干旱区北京杨树干液流特征及影响因素分析[J]. 水土保持学报, 2017, 31(6): 338-344. DOI:10.13870/j.cnki.stbcxb.2017.06.053.
MA C M, MA Y J, CHENG Y M. Characteristics and the driving forces of sapflow in stems of Populus beijingensis in Bashang area of north-west Hebei[J]. Journal of Soil and Water Conservation, 2017, 31(6): 338-344.
[22] 丁访军, 王兵, 赵广东. 毛竹树干液流变化及其与气象因子的关系[J]. 林业科学, 2011, 47(7): 73-81. DOI:10.11707/j.1001-7488.20110711
DING F J, WANG B, ZHAO G D. Sapflow changes of Phyllostachys edulis and their relationships with meteorological factors[J]. Scientia Silvae Sinicae, 2011, 47(7): 73-81.
[23] GARCÍA-SANTOS G. Transpiration in a sub-tropical ridge-top cloud forest[J]. Journal of Hydrology, 2012, 462/463: 42-52. DOI:10.1016/j.jhydrol.2011.08.069.
[24] KUME T, KOMATSU H, KURAJI K, et al. Less than 20-min time lags between transpiration and stem sap flow in emergent trees in a Bornean tropical rainforest[J]. Agricultural and Forest Meteorology, 2008, 148(6/7): 1181-1189. DOI:10.1016/j.agrformet.2008.02.010.
[25] WALLACE J, MCJANNET D. Processes controlling transpiration in the rainforests of north Queensland, Australia[J]. Journal of Hydrology, 2010, 384(1/2): 107-117. DOI:10.1016/j.jhydrol.2010.01.015.
[26] 程静, 欧阳旭, 黄德卫, 等. 鼎湖山针阔叶混交林4种优势树种树干液流特征[J]. 生态学报, 2015, 35(12): 4097-4104. DOI:10.5846/stxb201310202533.
CHENG J, OUYANG X, HUANG D W, et al. Sap flow characteristics of four dominant tree species in a mixed conifer-broadleaf forest in Dinghushan[J]. Acta Ecologica Sinica, 2015, 35(12): 4097-4104.
[27] 池波, 蔡体久, 满秀玲, 等. 大兴安岭北部兴安落叶松树干液流规律及影响因子分析[J]. 北京林业大学学报, 2013, 35(4): 21-26. DOI:10.13332/j.1000-1522.2013.04.018.
CHI B, CAI T J, MAN X L, et al. Effects of influencing factors on stem sap flow in Larix gmelinii in northern Da Hinggan Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2013, 35(4): 21-26.
[28]SUN H Z, ZHOU X F, ZHAO H X. A researches on stem sap flow dynamics of Betula platyphylla[J]. Acta Ecologica Sinica, 2002, 22(9):1387-1391.DOI:10.3321/j.issn:1000-0933.2002.09.003
[29] 孙鹏森,马履一,王小平,等.油松树干液流的时空变异性研究[J]. 北京林业大学学报, 2000, 22(5):1.DOI:10.3321/j.issn:1000-1522.2000.05.001.
SUN P S, MA L Y, WANG X P, et al. Temporal and spacial variation of sap flow of Chinese pine(Pinus tabulaeformis)[J]. Journal of Beijing Forestry University, 2000, 22(5):1.
[30] 马玲, 赵平, 饶兴权, 等. 马占相思树干液流特征及其与环境因子的关系[J]. 生态学报, 2005, 25(9): 2145-2151. DOI:10.3321/j.issn:1000-0933.2005.09.003.
MA L, ZHAO P, RAO X Q, et al. Effects of environmental factors on sap flow in Acacia mangium[J]. Acta Ecologica Sinica, 2005, 25(9): 2145-2151.
[31] SHAO X M. Reconstruction of precipitation variation from tree rings in recent 1000 years in Delingha, Qinghai[J]. Science in China Series D, 2005, 48(7): 939. DOI:10.1360/03yd0146.
[32] WILSON K B, HANSON P J, MULHOLLAND P J, et al. A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance[J]. Agricultural and Forest Meteorology, 2001, 106(2): 153-168. DOI:10.1016/s0168-1923(00)00199-4.
[33] LIU C W, DU T S, LI F S, et al. Trunk sap flow characteristics during two growth stages of apple tree and its relationships with affecting factors in an arid region of northwest China[J]. Agricultural Water Management, 2012, 104: 193-202. DOI:10.1016/j.agwat.2011.12.014.
[34] 涂洁,刘琪璟,李海涛,等.江西千烟洲湿地松生长旺季树干液流动态及影响因素分析[J]. 林业科学,2008,44(1):46-51.DOI:10.11707/j.1001-7488.20080108.
TU J, LIU Q J, LI H T, et al. Dynamics of sap flow of Pinus elliottii and its relevant factors in rapid growth season at Qianyanzhou Experimental Station of Jiangxi Province[J]. Scientia Silvae Sinicae, 2008,44(1):46-51.
[35] ZHAO C Y, SI J H, FENG Q, et al. Comparative study of daytime and nighttime sap flow of Populus euphratica[J]. Plant Growth Regulation, 2017, 82(2): 353-362. DOI:10.1007/s10725-017-0263-6.
[36] 刘华, 佘春燕, 白志强, 等. 喀纳斯保护区西伯利亚云杉树干液流动态变化[J]. 南京林业大学学报(自然科学版), 2016, 40(1): 65-72.DOI:10.3969/j.issn.1000-2006.2016.01.011.
LIU H, SHE C Y, BAI Z Q, et al. Dynamic changes of trunk sap flow of Picea obovata in the Kanas National Nature Reserve[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2016, 40(1): 65-72.

备注/Memo

备注/Memo:
收稿日期:2018-08-08 修回日期:2018-11-26
基金项目:国家自然科学基金项目(31760240); 贵州省科技基金项目(黔科合基础[2018]1096)。
第一作者:李成龙(1037743695@qq.com)。*通信作者:丁访军(ding3920034@163.com),研究员,ORCID(0000-0002-4181-6896)。
更新日期/Last Update: 2019-05-15