[1]胡文杰,崔鸿侠,王晓荣,等.三峡库区马尾松次生林林分结构特征分析[J].南京林业大学学报(自然科学版),2019,43(03):067-76.[doi:10.3969/ j.issn.1000-2006.201805075]
 HU Wenjie,CUI Hongxia,WANG Xiaorong,et al.Structure characteristics of Pinus massoniana secondary forest in the Three Gorges Reservoir area[J].Journal of Nanjing Forestry University(Natural Science Edition),2019,43(03):067-76.[doi:10.3969/ j.issn.1000-2006.201805075]
点击复制

三峡库区马尾松次生林林分结构特征分析
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
43
期数:
2019年03期
页码:
067-76
栏目:
研究论文
出版日期:
2019-05-15

文章信息/Info

Title:
Structure characteristics of Pinus massoniana secondary forest in the Three Gorges Reservoir area
文章编号:
1000-2006(2019)03-0067-10
作者:
胡文杰1崔鸿侠1王晓荣1雷静品2潘 磊1*唐万鹏1庞宏东1袁秀锦2
1.湖北省林业科学研究院,湖北 武汉 430075; 2.中国林业科学研究院林业研究所,北京 100091
Author(s):
HU Wenjie1 CUI Hongxia1 WANG Xiaorong1 LEI Jingpin2 PAN Lei1* TANG Wanpeng1 PANG Hongdong1 YUAN Xiujin2
1.Hubei Academy of Forestry, Wuhan 430075, China; 2.Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
关键词:
马尾松次生林 垂直结构 空间结构 演替趋势
Keywords:
Pinus massoniana secondary forest vertical structure spatial structure succession trend
分类号:
S718; S750
DOI:
10.3969/ j.issn.1000-2006.201805075
文献标志码:
A
摘要:
【目的】马尾松林是三峡库区重要的防护林类型之一,了解林分空间结构特征是实现森林可持续经营的重要途径。笔者从垂直结构上分析三峡库区马尾松林分结构特征,为进一步研究林分演替、制定合理的防护林经营措施提供依据。【方法】以湖北省秭归县九岭头林场马尾松林为研究对象,选取大小分别为50 m×60 m、50 m×60 m和50 m×50 m的3块样地,基于样地调查,考虑不同高度林木冠层光合作用的生态学特性,采用树冠光竞争高度法将林分划分为上林层、中林层和下林层,并在此基础上分析各林层径级分布、树种组成及空间结构等特征。【结果】①3样地平均胸径随着垂直层次的升高而增大,下林层、中林层、上林层的平均胸径变幅分别为7.34~8.95 cm、14.42~18.15 cm和24.48~26.06 cm。不同林层间蓄积量存在极显著差异,上林层占整个林分蓄积量的比例最高,为63.06%~76.78%,而下林层蓄积量占比仅为4.32%~7.10%。②随着垂直层次的上升,林木径级分布变广,林分密度变小,上林层径级主要分布在22和30 cm径级,呈不规则多峰曲线,中林层径级主要分布在10、18和22 cm径级,主要呈左偏峰分布,下林层径级呈倒“J”形分布,即随着径级的增大,林分密度急剧减小; ③下林层的树种主要以本土阔叶树种为主,代表了整个林分的树种组成。随着林层的上升,树种数总体呈减小趋势。马尾松是上林层的优势树种,其数量占比为69.72%~94.62%,但随着垂直层次的下降,其比例大幅减少,表明在马尾松林演替进程中,林下更新环境较好,有利于本土阔叶树种的生长; ④角尺度在不同林层间未表现出明显的变化规律,林分整体呈聚集分布或随机分布,而大小比数、混交度及林木竞争指数随着林层的降低而增大,表明随着林层的降低,林木大小分化程度越明显,树种隔离程度越高,同时林木个体间的竞争也越激烈; ⑤各林层林木角尺度分布频率总体呈正态分布,角尺度为0.5的林木占比为46.03%~63.33%,说明林分中处于随机分布的林木占多数,但下林层中林木主要呈聚集性分布。上林层处于优势状态的林木比例最大,中林层处于亚优势或优势的林木多于较劣势或劣势的林木,而下林层处于较劣势或劣势的林木比例最大。下林层处于强度混交和极强度混交的比例远大于处于零度和弱度混交的,且竞争指数在下林层达到最大,表明下林层林木个体受到来自其他树种的竞争压力较大,而林木所承受的竞争力越大,越不利于其蓄积量的积累。【结论】未来该地区马尾松次生林有可能演替成为针阔比例相当或以阔叶树为主、针叶树为辅的针阔混交林; 该地区马尾松林应以中林层和下林层为主要调控层次; 以较易获取的参数为基础,构建能够准确选出备伐木的模型是今后值得关注的问题。
Abstract:
【Objective】Understanding the spatial structure of forests is important for developing sustainable forest management practices. The Pinus massoniana forest is an important protected forest type in the Three Gorges Reservoir area. This study was conducted to provide a theoretical basis for further analyzing forest succession trends and taking reasonable management measures for forest protection by analyzing the vertical structure characteristics of the P. massoniana forest.【Method】 Using the P. massoniana forest in Jiulingtou Forest Farm, Zigui County, Hubei Province as the research object, sample plots with sizes of 50 m × 60 m, 50 m × 60 m and 50 m × 50 m were investigated, and the principle of the canopy competition(in height)for light was examined to divide the vertical structure into an upper layer, middle layer and lower layer while considering the ecological characteristics of the canopy photosynthesis at different heights. The diameter at breast height(DBH)distribution, tree species composition, and spatial structural characteristics were analyzed. 【Result】 ①The average DBH increased with the vertical layer, and the average DBH values of the lower, middle to the upper forest layer were 7.34-8.95 cm, 14.42-18.15 and 24.48-26.06 cm, respectively. There was a significant difference in the volumes among the different layers. The upper layer showed the highest proportion of the total forest volume of 63.06%-76.78%, while the volume proportion of the lower layer only occupied 4.32%-7.10%. ②The diameter class increased as the vertical layer increased, while stand density decreased. The upper layers were mainly distributed in classes 22 and 30 cm, showing an irregular multi-peak curve. The middle layers were mainly distributed in classes 10, 18 and 22 cm, showing a mainly left-skewed peak. The lower layer showed a typical inverted “J” distribution, indicating that stand density decreased sharply with increasing diameter grades. ③ The main tree species in the lower layer were native hardwood species, and this layer represented the species composition of the whole stand. At higher forest layers, the number of tree species generally decreased. Although P. massoniana was the dominant tree species in the upper layer accounting for 69.72%-94.62% of species, its proportion decreased sharply as the vertical layer declined, demonstrating that the regeneration environment of P. massoniana forest benefitted the growth of native hardwood species. ④The change in the W(uniform angle index)value among the different layers showed no obvious regularity, with the stands generally presenting clustered or random distributions. The U(neighborhood comparison)value, M(mixing degree)value, and tree competition index increased as the forest layers declined, indicating that as the forest layer decreased, the degree of DBH differentiation became clearer, degree of tree species isolation was higher, and competition among individual trees was greater. ⑤The “W” distribution frequency of each layer generally showed a normal distribution. The proportion of trees showing a “W” value of 0.5 ranged from 46.03% to 63.33%, indicating that most trees were randomly distributed. However, trees in the lower layer were mainly clustered. In the upper layer, the proportion of superior trees was the largest, and the proportion of sub-dominant or dominant trees was larger than that of less inferior or inferior trees in the middle layer. In contrast, the proportion of inferior trees was the highest in the lower layer. The proportion of trees showing intensity mixing and extreme intensity mixing in the lower layer was much higher than that for zero degree and weak degree mixing; moreover, the tree competition index reached a maximum in the lower forest layer, indicating that the individual trees in the lower layer were subject to greater competition pressure from other tree species. As competitiveness of trees increased, the volume was reduced.【Conclusion】In the future, the P. massoniana secondary forest in this region may show succession to mixed forests with broad-leaved trees and coniferous trees in the same proportion, or become mixed forests with more broad-leaved trees and fewer coniferous trees. The main regulation layers of P. massoniana secondary forest in this area are the middle layer and lower layer. Based on easily obtained parameters, models that can accurately determine logging of trees should be built.

参考文献/References:

[1] VON GADOW K, HUI G Y. Analysis of forest structure and diversity-based on neighbourhood relations[R]. Lisbon Portugal: IUFRO International Conference,2002.
[2] 赵洋毅,王克勤,陈奇伯,等.西南亚热带典型天然常绿阔叶林的空间结构特征[J].西北植物学报,2012, 32(1):187-192.DOI:10.3969/j.issn.1000-4025.2012.01.030.
ZHAO Y Y, WANG K Q, CHEN Q B, et al. Spatial structural characteristics of typical natural evergreen broad-leaved forest features of southwest subtropical area, China[J]. Acta Bot Boreal-Occident Sin, 2012, 32(1):187-192.
[3] 袁士云,张宋智,刘文桢,等.小陇山辽东栎次生林的结构特征和物种多样性[J].林业科学,2010, 46(5):27-34.DOI:10.11707/j.1001-7488.20100505.
YUAN S Y, ZHANG S Z, LIU W Z, et al. Tree species diversity and structure characteristic of secondary forests of Quercus liaotungensis on Xiaolongshan[J]. Scientia Silvae Sinicae, 2010, 46(5):27-34.
[4] 陈昌雄,陈平留,肖才生,等.人工马尾松复层混交林林分结构规律的研究[J].林业科学,2001, 37(S1):205-207.DOI:10.11707/j.1001-7488.2001S138.
CHEN C X, CHEN P L, XIAO C S, et al. Study on the stand structure of multi-stories mixed un evenaged Pinus massoniana Lamb. plantations[J].Scientia Silvae Sinicae, 2001, 37(S1):205-207.
[5] 万慧霖,冯宗炜.庐山常绿阔叶林物种组成及其演替趋势[J].生态学报, 2008, 28(3):1147-1157.DOI:10.3321/j.issn:1000-0933.2008.03.030.
WAN H L, FENG Z W. Species composition and succession trend of evergreen broad-leaved forest in Lushan Mountain, Jiangxi Province, China[J]. Acta Ecologica snica, 2008, 28(3):1147-1157.
[6] TANG C Q, ZHAO M H, LI X S, et al. Secondary succession of plant communities in a subtropical mountainous region of SW China[J]. Ecological Research,2009, 25(1):149-161.DOI:10.1007/s11284-009-0644-z.
[7] DALE M R T. Spatial pattern analysis in plant ecology.[J]. Quarterly Review of Biology, 1999, 15(1):195-196.
[8] 牛赟,刘明龙,马剑,等.祁连山大野口流域青海云杉林分结构分析[J].中南林业科技大学学报, 2014(11):23-28.DOI:10.3969/j.issn.1673-923X.2014.11.005.
NIU Y, LIU M L, MA J, et al. Analysis on stand structure of Picea crassifolia forest in Dayekou basin of Qilian Mountains[J]. Journal of Central South University of Forestry & Technology, 2014(11):23-28.
[9] 唐万鹏,潘磊,崔鸿侠,等.三峡库区马尾松天然林林分结构特征分析[J].林业科学研究,2015, 28(5): 681-685.DOI:10.3969/j.issn.1001-1498.2015.05.012.
TANG W P, PAN L, CUI H X, et al. Analysis on structure characteristics of Pinus massoniana natural forest in the Three Gorges Reservoir area[J]. Forest Research, 2015, 28(5):681-685.
[10] 明安刚,刘世荣,李华,等.近自然化改造对马尾松和杉木人工林生物量及其分配的影响[J].生态学报, 2017, 37(23):7833-7842.DOI:10.5846/stxb201704030573.
MING A G, LIU S R, LI H, et al. Effects of close-to-nature transformation on biomass and its allocation in Pinus massoniana and Cunninghamia lanceolata plantations[J].Acta Ecologica snica,2017, 37(23):7833-7842.
[11] SONG B, CHEN J, WILLIAMS T M. Spatial relationships between canopy structure and understory vegetation of an old-growth Douglas-fir forest[J]. Forest Research, 2014(3):118.DOI:10.4172/2168-9776.1000118.
[12] LIU T, LIN K, VADEBONCOEUR M A, et al. Understorey plant community and light availability in conifer plantations and natural hardwood forests in Taiwan[J]. Applied Vegetation Science, 2015, 18(4):591-602.DOI:10.1111/avsc.12178.
[13] 郑景明,张春雨,周金星,等.云蒙山典型森林群落垂直结构研究[J].林业科学研究,2007, 20(6):768-774.DOI:10.3321/j.issn:1001-1498.2007.06.006.
ZHENG J M, ZHANG C Y, ZHOU J X, et al. Study on vertical structure of forest communities in Yunmengshan[J]. Forest Research, 2007, 20(6):768-774.
[14] 蒋政,丁雨龙,宋东杰,等.安徽横山植物群落的组成、结构与多样性分析[J].植物资源与环境学报, 2015, 24(3):99-106.DOI:10.3969/j.issn.1674-7895.2015.03.13.
JIANG Z, DING Y L, SONG D J, et al. Analyses on composition, structure and diversity of plant community of Hengshan Mountain in Anhui Province[J]. Journal of Plant Resources and Environment, 2015, 24(3):99-106.
[15] RUPRECHT H,DHAR A,AIGNER B,et al. Structural diversity of English yew(Taxus baccata L.)populations[J]. European Journal of Forest Research,2009,129(2): 189-198.DOI:10.1007/s10342-009-0312-4.
[16] 王鹏程,邢乐杰,肖文发,等.三峡库区森林生态系统有机碳密度及碳储量[J].生态学报,2009, 29(1):97-107.DOI:10.3321/j.issn:1000-0933.2009.01.013.
WANG P C, XING L J, XIAO W F, et al. Organic carbon density and storage of forest ecosystem in Three Gorges reservoir area[J]. Acta Ecologica Snica, 2009, 29(1):97-107.
[17] 袁传武,吴保国,史玉虎,等.基于RS及GIS的鄂西三峡库区森林资源结构及空间分布格局研究[J].西北林学院学报,2007, 22(3):185-189.DOI:10.3969/j.issn.1001-7461.2007.03.044.
YUAN C W, WU B G, SHI Y H, et al.A study on RS and GIS-based forest resources structure and spatial distribution pattern in the Three Gorges reservoir region in Western Hubei[J].Journal of Northwest Forestry University, 2007, 22(3):185-189.
[18] 王娜,程瑞梅,肖文发,等.三峡库区马尾松不同直径细根分解动态及其影响因素[J].应用生态学报, 2017, 28(2):391-398.DOI:10.13287/j.1001-9332.201702.017.
WANG N, CHENG R M, XIAO W F, et al.Dynamics of fine root decomposition and its affecting factors of Pinus massoniana in the Three Gorges reservoir area, China[J].Chinese Journal of Applied Ecology, 2017, 28(2):391-398.
[19] 郑景明,姜英淑,王襄平,等.取样面积对北京市蒙古栎林垂直层次结构分析结果的影响[J].北京林业大学学报,2010,32(1):80-83.DOI:10.13332/j.1000-1522.2010.s1.027.
ZHENG J M, JIANG Y S, WANG X P, et al.Effects of sampling area on analyses of vertical structure in Quercus mongolica forest, Beijing[J].Journal of Beijing Forestry University, 2010, 32(1):80-83.
[20] ZENNER E K. Investigating scale-dependent stand heterogeneity with structure-area-curves[J]. Forest Ecology and Management, 2005, 209(1):87-100.DOI:10.1016/j.foreco.2005.01.004.
[21] LATHAM P A, ZUURING H R, COBLE D W. A method for quantifying vertical forest structure[J]. Forest Ecology and Management, 1998, 104(1):157-170.DOI:10.1016/s0378-1127(97)00254-5.
[22] 陈科屹,张会儒,雷相东,等.云冷杉过伐林垂直结构特征分析[J].林业科学研究, 2017,30(3):450-459.DOI:10.13275/j.cnki.lykxyj.2017.03.013.
CHEN K Y, ZHANG H R, LEI X D, et al. Analysis of vertical structure characteristics for Spruce-fir over-cutting forest[J]. Forest Research, 2017,30(3):450-459.
[23] 惠刚盈, GADOW K V, 胡艳波.林分空间结构参数角尺度的标准角选择[J].林业科学研究, 2004, 17(6):687-692.DOI:10.13275/j.cnki.lykxyj.2004.06.001.
HUI G Y, GADOW K V, HU Y B. The optimum standard angle of the uniform angle index[J]. Forest Research, 2004, 17(6):687-692.
[24] 惠刚盈, GADOW K V, MATTHIAS A. 一个新的林分空间结构参数——大小比数[J]. 林业科学研究, 1999, 12(1):1-6.DOI:10.13275/j.cnki.lykxyj.1999.01.001.
HUI G Y, GADOW K V, MATTHIAS A. A new parameter for stand spatial structure—neighbourhood comparison[J]. Forest Research, 1999, 12(1):1-6.
[25] 李建军,李际平,刘素青,等.基于Hegyi改进模型的红树林空间结构竞争分析[J]. 中南林业科技大学学报, 2010, 30(12): 23-27.DOI:10.14067/j.cnki.1673-923x.2010.12.022.
LI J J, LI J P, LIU S Q, et al. The Mangrove spatial structure competitive analysis based on Hegyi improved model[J]. Journal of Central South University of Forestry & Technology, 2010, 30(12): 23-27.
[26] 何友均,梁星云,覃林,等.南亚热带马尾松红椎人工林群落结构、物种多样性及基于自然的森林经营[J]. 林业科学, 2013, 49(4):24-33.DOI:10.11707/j.1001-7488.20130404.
HE Y J, LIANG X Y, QIN L, et al.Community structure, species diversity of Pinus Massoniana and castanopsis hystrix plantation and the nature-based forest management in the southern subtropical China[J].Scientia Silvae Sinicae, 2013, 49(4):24-33.
[27] 罗应华,孙冬婧,林建勇,等.马尾松人工林近自然化改造对植物自然更新及物种多样性的影响[J].生态学报, 2013, 33(19):6154-6162.DOI:10.5846/stxb201306101601.
LUO Y H, SUN D J, LIN J Y, et al.Effect of close-to-nature management on the natural regeneration and species diversity in a masson pine plantation[J].Acta Ecologica Sinica,2013, 33(19):6154-6162.
[28] 梁建平.马尾松、红锥混交林林冠结构的研究[J]. 广西林业科学, 1992, 21(1):11-16.DOI:10.19692/j.cnki.gfs.1992.01.004.
LIANG J P.Study on the canopy structure of mixed forests of Pinus massoniana and Castanopsis hystrix[J].Guangxi Forestry Science, 1992, 21(1):11-16.
[29] 柴宗政.秦岭中段华北落叶松人工林生长特性及近自然经营技术研究[D]. 杨凌:西北农林科技大学, 2013.
CHAI Z Z. The study on growth characteristics and close-to-nature management techniques for Larix principis-rupperchtii artificial forests in intermediate section of Qinling mountains[D]. Yangling: Northwest A&F University,2013.
[30] 郑丽凤,周新年,江希钿,等.松阔混交林林分空间结构分析[J].热带亚热带植物学报,2006, 14(4):275-280.DOI:10.3969/j.issn.1005-3395.2006.04.002.
ZHENG L F, ZHOU X N, JIANG X D, et al. Analysis of the stand spatial structur e of Pinus massoniana-broadleaved mixed forest[J].Journal of Tropical and Subtropical Botany, 2006, 14(4):275-280.
[31] 周小勇, 黄忠良, 史军辉,等. 鼎湖山针阔混交林演替过程中群落组成和结构短期动态研究[J]. 热带亚热带植物学报, 2004, 12(4):323-330.DOI:10.3969/j.issn.1005-3395.2004.04.006.
ZHOU X Y, HUANG Z L, SHI J H, et al. Short-term dynamics of community composition and structure during succession of coniferous and broad-leaved mixed forest in Dinghushan[J].Journal of Tropical and Subtropical Botany, 2004, 12(4):323-330.
[32] 修勤绪, 陆元昌, 曹旭平,等. 目标树林分作业对黄土高原油松人工林天然更新的影响[J]. 西南林业大学学报(自然科学版), 2009, 29(2):13-19.DOI:10.3969/j.issn.2095-1914.2009.02.003.
XIU Q X, LU Y C, CAO X P, et al. Effect of target tree stand management on natural regeneration of Pinus tabulaeformis plantations on Loess Plateau Area[J].Journal of Southwest Forestry College, 2009, 29(2):13-19.
[33] 雷娜庆, 铁牛, 刘洋,等. 兴安落叶松林径级分布格局及其关联性[J]. 东北林业大学学报, 2017, 45(2):1-5.DOI:10.13759/j.cnki.dlxb.2017.02.001.
LEI N Q, TIE N, LIU Y,et al. Spatial distribution patterns and associations of diameter class in Larix gmelinii in cold temperate zone forest[J].Journal of Northeast Forestry University,2017, 45(2):1-5.
[34] 玉宝, 张秋良, 王立明. 中幼龄兴安落叶松过伐林垂直结构综合特征[J]. 林业科学, 2015, 51(1):132-139.DOI:10.11707/j.1001-7488.20150116.
YU B, ZHANG Q L, WANG L M. Comprehensive characteristics of the vertical structure of middle young over cutting forest of Larix gmelinii[J]. Scientia Silvae Sinicae, 2015, 51(1):132-139.
[35] 黎芳, 潘萍, 臧颢,等. 赣南马尾松林分多功能经营空间结构优化模型研究[J]. 西南林业大学学报(自然科学), 2017, 37(6):141-147.DOI:10.11929/j.issn.2095-1914.2017.06.023.
LI F, PAN P, ZANG Y, et al. Spatial structure optimizing model of Pinus massoniana stand based on multi-function management in southern Jiangxi[J]. Journal of Southwest Forestry University, 2017, 37(6):141-147.
[36] 孟楚, 郑小贤. 福建三明马尾松天然林空间结构特征研究[J]. 西北林学院学报, 2015, 30(5):181-186.DOI:10.3969/j.issn.1001-7461.2015.05.30.
MENG C, ZHENG X X. Spatial structure characteristics of Pinus massoniana natural forest[J]. Journal of Northwest Forestry University, 2015, 30(5):181-186.
[37] 李明辉, 何风华, 潘存德. 天山云杉天然林不同林层的空间格局和空间关联性[J]. 生态学报, 2011, 31(3):620-628.
LI M H, HE F H, PAN C D. Spatial distribution pattern of different strata and spatial assocations of different strata in the Schrenk spruce forest,northwest China[J]. Acta Ecologica Snica, 2011, 31(3):620-628.
[38] 方国景. 天目山常绿阔叶林空间结构研究[D].杭州:浙江农林大学, 2008.
FANG G J. Study on spatial structure of evergreen broad-leaved forest in Tianmu mountain[D]. Hangzhou: Zhejiang Forestry University, 2008.
[39] 胡艳波, 惠刚盈, 戚继忠,等. 吉林蛟河天然红松阔叶林的空间结构分析[J]. 林业科学研究, 2003, 16(5):523-530.DOI:10.13275/j.cnki.lykxyj.2003.05.002.
HU Y B, HUI G Y, QI J Z, et al. Analysis of the spatial structure of natural Korean pine broad leaved forest[J]. Forest Research, 2003, 16(5):523-530.
[40] 项佳, 杨素萍, 刘健, 等. 福建三明市金丝湾森林公园米槠林林分空间结构分析[J]. 西北林学院学报, 2017, 32(5):230-236.DOI:10.3969/j.issn.1001-7461.2017.05.39.
XIANG J, YANG S P, LIU J, et al. Spatial structure analysis of Castanopsis carlesii stand in Jinsiwan forest park of Sanming, Fujian[J]. Journal of Northwest Forestry University, 2017, 32(5):230-236.
[41] 涂育合, 叶功富, 林武星,等. 杉木大径材定向培育的适宜经营密度[J]. 浙江农林大学学报, 2005, 22(5):530-534.DOI:10.3969/j.issn.2095-0756.2005.05.012.
TU Y H, YE G F, LIN W X, et al. Big-diameter-oriented cultivation techniques of Cunninghamia lanceolata with suitable management density[J]. Journal of Zhejiang Forestry College, 2005, 22(5):530-534.
[42] 郑宇, 朱锦懋, 郑怀舟. 人为干扰对福建建瓯常绿阔叶林物种组成及其数量特征的影响[J]. 中国农学通报, 2007, 23(9):209-217.DOI:10.3969/j.issn.1000-6850.2007.09.047.
ZHENG Y, ZHU J M, ZHENG H Z. The Effects of human-caused disturbance on the sorts of species and their quantitative characteristics of evergreen broad-leaf forest in Jian'ou City of Fujian Province[J]. Chinese Agricultural Science Bulletin, 2007, 23(9):209-217.
[43] 郭怀林, 齐伟. 秦岭中段华北落叶松人工林林分结构优化研究[J]. 西北林学院学报, 2017, 32(5):144-149.DOI:10.3969/j.issn.1001-7461.2017.05.25.
GUO H L, QI W. Forest stand structure optimization of Larix principis-rupprechtii plantation in the central area of Qinling Mountains[J].Journal of Northwest Forestry University, 2017, 32(5):144-149.
[44] 董灵波, 刘兆刚. 樟子松人工林空间结构优化及可视化模拟[J]. 林业科学, 2012, 48(10):77-85.DOI:10.11707/j.1001-7488.20121013.
DONG L B, LIU Z G. Visual management simulation for Pinus sylvestris var. mongolica plantation based on optimized spatial structure[J]. Scientia Silvae Sinicae, 2012, 48(10):77-85.
[45] 陈昌雄, 刘健, 余坤勇,等. 基于空间结构优化的马尾松阔叶树混交林模拟采伐[J]. 西南林业大学学报, 2010, 30(6):29-32.DOI:10.3969/j.issn.2095-1914.2010.06.007.
CHEN C X, LIU J, YU K Y, et al. Simulated cutting for the mixed forest of Pinus massoniana and broad-leaved tree species based on optimized spatial structure[J]. Journal of Southwest Forestry University, 2010, 30(6):29-32.
[46] AMMER C, WEBER M. Impact of silvicultural treatments on natural regeneration of a mixed mountain forest in the Bavarian Alps[R].Wageningen:Institute for Forestry and Nature Research,1999.
[47] 王海军, 黄钰辉, 曾令海,等. 深圳市羊台山森林公园健康林分构建技术研究[J]. 林业与环境科学, 2013, 29(3):43-48.DOI:10.3969/j.issn.1006-4427.2013.03.008.
WANG H J, HUANG Y H, ZENG L H, et al. Reconstruction technology for healthy stands in Yangtaishan Forest Park of Shenzhen[J]. Forestry and Environmental Science, 2013, 29(3):43-48.
[48] 汤孟平, 唐守正, 雷相东,等. 林分择伐空间结构优化模型研究[J]. 林业科学, 2004, 40(5):25-31.DOI:10.11707/j.1001-7488.20040504.
TANG M P, TANG S Z, LEI X D, et al. Study on spatial structure optimizing model of stand selection cutting[J]. Scientia Silvae Sinicae, 2004, 40(5):25-31.
[49] 曹小玉, 李际平, 胡园杰,等. 杉木生态林林分间伐空间结构优化模型[J]. 生态学杂志, 2017, 36(4):1134-1141.DOI:10.13292/j.1000-4890.201704.035.
CAO X Y, LI J P, HU Y J, et al. Spatial structure optimizing model of stand thinning of Cunninghamia lanceolata ecological forest[J].Chinese Journal of Ecology, 2017, 36(4): 1134-1141.

相似文献/References:

[1]朱春阳,纪 鹏,李树华*.城市带状绿地结构类型对空气质量的影响[J].南京林业大学学报(自然科学版),2013,37(01):018.[doi:10.3969/j.issn.1000-2006.2013.01.003]
 ZHU Chunyang,JI Peng,LI Shuhua*.Effects of the different structure of urban green belts on the air quality[J].Journal of Nanjing Forestry University(Natural Science Edition),2013,37(03):018.[doi:10.3969/j.issn.1000-2006.2013.01.003]

备注/Memo

备注/Memo:
收稿日期:2018-05-30 修回日期:2018-11-06
基金项目:“十二五”农村领域国家科技支撑计划(2015BAD07B0403)。
第一作者:胡文杰(wenjiehu1725@163.com),ORCID(0000-0001-8039-1029)。*通信作者:潘磊(panlei2008@126.com),研究员,ORCID(0000-0002-0215-5482)。
更新日期/Last Update: 2019-05-15