[1]于 辉,陈 燕,张 欢,等.添加无机氮对山西太岳山油松林土壤氮素及温室气体通量的影响[J].南京林业大学学报(自然科学版),2019,43(03):085-91.[doi:10.3969/ j.issn.1000-2006.201805047]
 YU Hui,CHEN Yan,ZHANG Huan,et al.The effect of inorganic nitrogen addition on soil nitrogen and greenhouse gas flux for the Pinus tabulaeformis forest in Taiyue Mountain,Shanxi Province[J].Journal of Nanjing Forestry University(Natural Science Edition),2019,43(03):085-91.[doi:10.3969/ j.issn.1000-2006.201805047]
点击复制

添加无机氮对山西太岳山油松林土壤氮素及温室气体通量的影响
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
43
期数:
2019年03期
页码:
085-91
栏目:
研究论文
出版日期:
2019-05-15

文章信息/Info

Title:
The effect of inorganic nitrogen addition on soil nitrogen and greenhouse gas flux for the Pinus tabulaeformis forest in Taiyue Mountain,Shanxi Province
文章编号:
1000-2006(2019)03-0085-07
作者:
于 辉陈 燕张 欢周志勇*
森林资源与生态系统过程北京市重点实验室,北京林业大学林学院,北京 100083
Author(s):
YU Hui CHEN Yan ZHANG Huan ZHOU Zhiyong*
Beijing Key Laboratory of Forest Resources and Ecosystem Process, College of Forestry, Beijing Forestry University, Beijing 100083, China)
关键词:
添加无机氮 油松林 铵态氮 硝态氮 温室气体 山西太岳山
Keywords:
inorganic nitrogen addition Pinus tabulaeformis forest ammonia nitrogen nitrate nitrogen greenhouse gas Taiyue Mountain Shanxi Province
分类号:
S714.2
DOI:
10.3969/ j.issn.1000-2006.201805047
文献标志码:
A
摘要:
【目的】人类活动频繁引起大气氮沉降加剧,导致陆地生态系统中的氮循环发生了前所未有的变化,进而影响整个陆地生态系统生态环境。笔者通过模拟大气氮沉降,探究森林土壤中氮素含量及温室气体排放速率的响应规律以及氮素对温室气体排放的影响,为提高森林氮素利用率并减缓大气温室效应提供参考。【方法】以山西太岳山暖温带油松林为研究对象,以硝酸铵(NH4NO3)为外源无机氮添加对象,设置对照CK(0 g/m2)、N5(5 g/m2)、N10(10 g/m2)、N20(20 g/m2)、N40(40 g/m2)等5个施氮水平,每个施氮水平设置4个重复,共20块样地。于2017年8月采集土壤样品及温室气体样品(采用静态箱法),测定林地土壤中的全氮(TN)、总可溶性氮(TDN)、可溶性有机氮(DON)、铵态氮(NH+4-N)、硝态氮(NO-3-N))含量及土壤中温室气体N2O、CO2 和CH4的排放量,分析氮添加对土壤氮及温室气体排放的影响。【结果】在N5、N10、N20和N40各施氮水平处理下,油松林0~10 cm土壤中NO-3-N、TDN、DON的含量增加,与CK相比,含量增幅分别为25.04%~246.4%、13.29%~73.82%、4.54%~70.51%,NH+4-N含量随着施氮量水平的增加而增加,但各处理水平对TN含量无影响。在0~10 cm土壤中,与CK相比,NO-3-N和TDN含量在N10、N20、N40处理下显著增加(P <0.05),DON只在N40处理中显著增加(P <0.05),施氮处理对0~10cm土层中的各氮素具有明显的促进作用; 在≥10~20 cm土层中,与CK相比,TN、NH+4-N含量有增长趋势,NO-3-N含量在N10、N20、N40处理下显著增加(P <0.05),分别增加了234%、284%、663%,TDN随着施氮量的增加而增加,而DON则随着处理水平的增加而显著减小(P <0.05)。N2O、CO2的排放量随着施氮量的增加而增加,并且在N20、N40处理下排放量显著增加(P <0.05); 同时氮添加处理对CH4的吸收有明显的抑制现象,使CH4从森林土壤吸收状态转变为排放状态。在相关性分析中,0~10 cm土层及≥10~20 cm土层中NO-3-N和DON、N2O、CO2呈显著相关(P <0.05),而NH+4-N、TDN与N2O、CO2、CH4呈正相关,但无显著性(P >0.05); 在≥10~20 cm土壤中,DON与N2O、CO2、CH4呈负相关。【结论】在无机氮添加试验中,施氮处理明显增加了土壤中有效氮的含量,尤其是在N20和N40处理水平条件下,对油松林土壤中的有效氮素含量及温室气体排放具有明显的调控作用; 同时,有效氮含量的增加对森林土壤中温室气体的排放有明显的促进作用。因此,模拟氮沉降显著促进了森林土壤氮素循环及温室气体的排放,对生态环境的影响及温室效应的变化具有明显作用。
Abstract:
【Objective】Increased atmospheric nitrogen deposition has significantly altered the pathway and quantity of nitrogen input to the terrestrial ecosystems, and consequently influenced the ecosystem function. The atmospheric nitrogen deposition in future was emulated through applying inorganic nitrogen to the forest floor. The effect of nitrogen addition on the soil nitrogen transformation and the greenhouse gas emission was then investigated, the results of which could help evaluated the role of the forest ecosystems in northern China in coping with the global change.【Method】Inorganic nitrogen in the form of ammonium nitrate(NH4NO3), was scattered evenly on the floor of a Pinus tabulaeformis forest under rates of 0, 5, 10, 20 and 40 g/m2 with four replications, for a total of 20 plots. In August 2017, soil cores were sampled for the monitoring of total nitrogen(TN), total soluble nitrogen(TDN), ammonium nitrogen(NH+4-N), and nitrate nitrogen(NO-3-N)contents. Then, soil greenhouse gases(N2O, CO2 and CH4)were collected using the static chamber method to assess the effects of nitrogen addition on soil nitrogen and greenhouse gas emissions.【Result】Inorganic nitrogen addition significantly increased NO-3-N content by 25.04%-246.4%, TDN content by 13.29%-73.82%, and soluble organic nitrogen(DON)content by 4.54%-70.51% in the top 10 cm of the soils. Higher nitrogen treatment gradients significantly increased soil NH+4-N concentrations. No obvious variation was monitored by simulating nitrogen deposition. Nitrate nitrogen and TDN contents were markedly increased in N10, N20 and N40 plots(P < 0.05). DON concentration was significantly increased by N40 treatment. Simulated nitrogen deposition significantly affected soil nitrogen fractions at the soil depth of 0-10 cm. In the ≥10-20 cm soil layer, there was a trend for higher TN and NH+4-N concentrations across nitrogen plots. The content of NO-3-N was significantly increased by 234%, 284% and 663% by N10, N20 and N40 treatments, respectively. The concentration of TDN increased with higher nitrogen treatment levels. However, nitrogen deposition significantly decreased soil DON concentration. The greenhouse gases N2O and CO2 were positively correlated with inorganic nitrogen addition, with significant increases found in the N20 and N40 treatments(P < 0.05). In addition, nitrogen addition significantly decreased soil CH4 assimilation, as more CH4 was emitted at higher levels of nitrogen addition. Correlation analyses suggested that the concentration of NO-3-N was significantly correlated with variation in DON, N2O and CO2 concentrations(P < 0.05). The concentration of DON was negative correlated to N2O, CO2 and CH4. Although positive trends were discovered between NH+4-N and TDN with N2O, CO2 and CH4, these correlations were not significant.【Conclusion】Inorganic nitrogen addition considerably increased the available nitrogen content in the soil and the emission rates of greenhouse gases, especially under N20 and N40 gradients. The increased available nitrogen concentrations in the soil significantly accelerated forest soil greenhouse gas emissions. Overall, simulated atmospheric nitrogen deposition significantly altered forest soil nitrogen transformation and greenhouse gas emissions.

参考文献/References:

[1] REAY D S, DENTENER F, SMITH P, et al. Global nitrogen deposition and carbon sinks[J]. Nature Geoscience, 2008, 1(7): 430-437. DOI:10.1038/ngeo230.
[2] GALLOWAY J N, DENTENER F J, CAPONE D G, et al. Nitrogen cycles: past, present, and future[J]. Biogeochemistry, 2004, 70(2):153-226. DOI: 10.1007/s10533-004-0370-0.
[3] LIU X, ZHANG Y, HAN W, et al. Enhanced nitrogen deposition over China[J]. Nature, 2013, 494(7438): 459-462. DOI:10.1038/nature11917.
[4] DENG X W, HAN S J. Impact of nitrogen deposition on forest soil carbon pool[J]. Chinese Journal of Ecology, 2007, 26(10): 1622-1627.
[5] FANG Y, MO J M, GUNDERSEN P, et al. Nitrogen transformations in forest soils and its responses to atmospheric nitrogen deposition: a review[J]. Acta Ecologica Sinica, 2004, 24(7): 1523-1531. DOI: 10.1016/j.envpol.2018.10.054.
[6] 刘芙蓉, 张咏梅, 邓书林. 增温和CO2浓度加倍对川西亚高山针叶林土壤可溶性氮的影响[J]. 生态学报, 2013, 36(11): 2844-2849. DOI: 10.5846 / stxb201405080906.
LIU F R, ZHANG Y M, DENG S L, et al. Effects of elevated temperature and doubled CO2 concentration on soil dissolved organic carbon and nitrogen in a subalpine coniferous forest of western Sichuan, Southwest China[J].Chinese Journal of Ecology,2013, 36(11): 2844-2849.
[7] PERAKIS S S, SINKHORN E R. Biogeochemistry of a temperate forest nitrogen gradient[J]. Ecology, 2011, 92(7): 1481-1491. DOI:10.1890/10-1642.1.
[8] MOLDAN F, WRIGHT R F. Nitrogen leaching and acidification during 19 years of NH4NO3 additions to a coniferous forested catchment at Gårdsjön, Sweden(NITREX)[J]. Environ Pollut, 2011, 159(2): 431-440. DOI:10.1016/j.envpol.2010.10.025. 5.
[9] GROFFMAN P M, FISK M C. Phosphate additions have no effect on microbial biomass and activity in a northern hardwood forest[J]. Soil Biol Biochem, 2011, 43(12): 2441-2449. DOI:10.1016/j.soilbio.2011.08.011.
[10] 王文娟, 赵超, 杨鑫,等. 不同林龄杨树人工林土壤有效氮对模拟氮沉降的初期响应[J]. 南京林业大学学报(自然科学版), 2016, 40(1): 15-21. DOI: 10.5846 / stxb201405080906.
WANG W J,ZHAO C,YANG X, et al. The short-term responses of soil available nitrogen to simulated nitrogen deposition in Populus plantations at different ages[J].Journal of Nanjing Forestry University(Natural Sciences Edition),2016. 40(1): 15-21.
[11] MOSIER A R, HALVORSON A D, REULE C A, et al. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado[J]. Journal of Environmental Quality, 2006, 35(4): 1584. DOI: 10.2134/jeq2005.0232.
[12] PARRY M L, CANZIANI O F, PALUTIKOF J P, et al. Contribution of working group II to the fourth assessment report of the Intergovernmental Panel on Climate Change[J]. Encyclopedia of Language & Linguistics, 2007, 12(1): 171-175.
[13] SONG L, TIAN P, ZHANG J, et al. Effects of three years of simulated nitrogen deposition on soil nitrogen dynamics and greenhouse gas emissions in a Korean pine plantation of northeast China[J]. Sci Total Environ, 2017, 609: 1303-1311. DOI:10.1016/j.scitotenv.2017.08.017.
[14] 杨涵越,张婷,黄永梅,等.模拟氮沉降对内蒙古克氏针茅草原N2O排放的影响[J].环境科学,2016,37(5):1900-1907. DOI:10.13227/j.hjkx.2016.05.038.
YANG H Y,ZHANG T,HUANG Y M, et al. Effect of stimulated N deposition on N2O emission from a stipa Krylovii steppe in Inner Mongolia,China[J]. Environmental Science, 2016,37(5):1900-1907.
[15] 马芬,马红亮,邱泓,等.水分状况与不同形态氮添加对亚热带森林土壤氮素净转化速率及N2O排放的影响[J].应用生态学报,2015,26(02):379-387. DOI:10.13287/j.1001-9332.2015.0003.
MA F,MA H L,QIU H, et al. Effects of water levels and the additions of different nitrogen forms on soil net nitrogen transformation rate and N2O emission in subtropical forest soils[J]. Chinese Journal of Applied Ecology, 2015,26(02):379-387.
[16] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 2000:165-173.
LU R K. Soil agricultural chemical analysis method[M].Beijing: China Agricultural Science and Technology Press,2000:165-173.
[17] CHEN C R, XU Z H, ZHANG S L, et al. Soluble organic nitrogen pools in forest soils of subtropical Australia[J]. Plant & Soil, 2005, 277(1/2): 285-297. DOI 10.1007/s11104-005-7530-4.
[18] 李琛琛,刘宁,郭晋平,等. 氮沉降对华北落叶松叶特性和林下土壤特性的短期影响[J]. 生态环境学报, 2014,23(12):1924-1932. DOI:10.16258/j.cnki.1674-5906.2014.12.006.
LI C C, LIU N, GUO J P, et al.Short term effect of nitrogen deposition on needle of Larix and forest soil[J]. Ecology and Environmental Sciences, 2014, 23(12): 1924-1932.
[19] GAO W, CHENG S, FANG H, et al. Effects of simulated atmospheric nitrogen deposition on inorganic nitrogen content and acidification in a cold-temperate coniferous forest soil[J]. Acta Ecologica Sinica, 2013, 33(2):114-121. DOI:10.1016/j.chnaes.2013.01.008.
[20] 胡艳玲,胡士杰,李雪峰,等. 长白山原始林和次生林土壤有效氮含量对模拟氮沉降的响应[J]. 东北林业大学学报, 2009, 37(5): 36-38. DOI:10.13759/j.cnki.dlxb.2009.05.032.
HU Y L, HU S J, LI X F, et al. Esponses of soil available nitrogen of natural forest and secondary forest to simulated N deposition in Changbai Mountain [J]. Journal of Northeast Forestry University, 2009, 37(5): 36-38.
[21] CHAPPELL H N, PRESCOTT C E, VESTERDAL L. Long-term effects of nitrogen fertilization on nitrogen availability in coastal Douglas-fir forest floors [J].Soil Science Society of America Journal, 1999, 63(5): 1448-1454. DOI: 10.2136/sssaj1999.6351448x.
[22] FANG Y T, ZHU W X, GUNDERSEN P,et al. Large loss of dissolved organic nitrogen from nitrogen-saturated forests in subtropical China[J]. Ecosystems, 2009, 12(1): 33-45. DOI: 10.1007/s10021-008-9203-7.
[23] 汪金松.模拟氮沉降对暖温带油松林土壤碳循环过程的影响[D]. 北京:北京林业大学,2013.
WANG J S. Effects of simulated nitrogen deposition on soil carbon cyclical process of Pinus tabulaeformis in warm temperate of China[D]. Beijing:Beijing Forestry University, 2013.
[24] 梁艳,干珠扎布,曹旭娟,等.模拟氮沉降对藏北高寒草甸温室气体排放的影响[J].生态学报,2017,37(2):485-494.DOI:10.5846/stxb201508041645.
LIANG Y,GANZHU Z B,CAO X J,et al. Effects of simulated nitrogen deposition on greenhouse gas emissions from alpine meadows in northern Tibet[J]. Acta Ecologica Sinica, 2017,37(2):485-494.
[25] 宗宁, 石培礼,蒋婧,等.短期氮素添加和模拟放牧对青藏高原高寒草甸生态系统呼吸的影响[J].生态学报,2013, 33(19):6191-6201. DOI: 10.5846 / stxb201306071385.
ZONG N,SHI P L,JIANG J,et al. Interactive effects of short-term nitrogen enrichment and simulated grazing on ecosystem respiration in an alpine meadow on the Tibetan Plateau[J]. Acta Ecologica Sinica, 2013,33(19):6191-6201.
[26] FANG Y T, ZHU W X, GUNDERSEN P, et al. Large loss of dissolved organic nitrogen from nitrogen-saturated forests in subtropical China.[J]. Ecosystems, 2009, 12(1):33-45. DOI: 10.1007/s10021-008-9203-7.
[27] JIANG C, YU G, FANG H, et al. Short-term effect of increasing nitrogen deposition on CO, CH and NO fluxes in an alpine meadow on the Qinghai-Tibetan Plateau, China[J]. Atmospheric Environment, 2010, 44(24):2920-2926. DOI: 10.1016/j.atmosenv.2010.03.030.
[28] 张炜,莫江明,方运霆,等.氮沉降对森林土壤主要温室气体通量的影响[J].生态学报,2008,28(5):2309-2319. DOI: 10.3321/j.issn:1000-0933.2008.05.048.
ZHANG W,MO J W,FANG Y T,et al. Effects of nitrogen deposition on the greenhouse gas fluxes from forest soils[J]. Acta Ecologica Sinica, 2008, 28(5): 2309-2319.
[29] 胡正华,张寒,陈书涛,等.氮沉降对林带土壤N2O和CH4通量的影响[J].中国环境科学,2011,31(6):892-897.
HU Z H,ZHANG H,CHEN S T,et al. Effects of simulated nitrogen deposition on N2O and CH4 fluxes of soil in forest belt[J]. China Environmental Science,2011,31(06):892-897.
[30] 张裴雷,方华军,程淑兰,等.增氮对青藏高原东缘高寒草甸土壤甲烷吸收的早期影响[J].生态学报,2013, 33(13):4101-4110. DOI:10.5846/stxb201208281217.
ZHANG P L,FANG H J,CHENG S L,et al. The early effects of nitrogen addition on CH4 uptake in an alpine meadow soil on the Eastern Qinghai-Tibetan Plateau[J]. Acta Ecologica Sinica, 2013, 33(13): 4101-4110.
[31] ARONSON E L, DUBINSKY E A, HELLIKER B R. Effects of nitrogen addition on soil microbial diversity and methane cycling capacity depend on drainage conditions in a pine forest soil[J]. Soil Biol Biochem, 2013, 62(62): 119-128. DOI: 10.1016/j.soilbio.2013.03.005.
[32] REAY D S, NEDWELL D B. Methane oxidation in temperate soils: effects of inorganic N [J]. Soil Biology & Biochemistry, 2004, 36(12): 2059-2065. DOI: 10.1016/j.soilbio.2004.06.002.

备注/Memo

备注/Memo:
收稿日期:2018-05-17 修回日期:2018-11-06
基金项目:国家重点研发计划(2016YFD0600205); 林业科技创新平台运行补助项目(2017,2018-LYPT-DW-153)。
第一作者:于辉(1003179192@qq.com),ORCID(0000-0002-9196-1880)。*通信作者:周志勇(zhiyong@bjfu.edu.cn),副教授,ORCID(0000-0002-4467-0845)。
更新日期/Last Update: 2019-05-15